These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 20366615)

  • 1. Carbon nanotubes as cooper-pair beam splitters.
    Herrmann LG; Portier F; Roche P; Yeyati AL; Kontos T; Strunk C
    Phys Rev Lett; 2010 Jan; 104(2):026801. PubMed ID: 20366615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. P-wave Cooper pair splitting.
    Soller H; Komnik A
    Beilstein J Nanotechnol; 2012; 3():493-500. PubMed ID: 23019543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Entanglement detection from conductance measurements in carbon nanotube cooper pair splitters.
    Braunecker B; Burset P; Levy Yeyati A
    Phys Rev Lett; 2013 Sep; 111(13):136806. PubMed ID: 24116805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Cooper Pair Splitter.
    Brange F; Prech K; Flindt C
    Phys Rev Lett; 2021 Dec; 127(23):237701. PubMed ID: 34936782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooper pair splitting in parallel quantum dot Josephson junctions.
    Deacon RS; Oiwa A; Sailer J; Baba S; Kanai Y; Shibata K; Hirakawa K; Tarucha S
    Nat Commun; 2015 Jul; 6():7446. PubMed ID: 26130172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Crossed Andreev Reflection in Double-Bilayer Graphene.
    Park GH; Watanabe K; Taniguchi T; Lee GH; Lee HJ
    Nano Lett; 2019 Dec; 19(12):9002-9007. PubMed ID: 31738553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Efficiency Cooper-Pair Splitter in Quantum Anomalous Hall Insulator Proximity-Coupled with Superconductor.
    Zhang YT; Deng X; Sun QF; Qiao Z
    Sci Rep; 2015 Oct; 5():14892. PubMed ID: 26450824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current cross-correlations in double quantum dot based Cooper pair splitters with ferromagnetic leads.
    Wrześniewski K; Trocha P; Weymann I
    J Phys Condens Matter; 2017 May; 29(19):195302. PubMed ID: 28379841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable Superconducting Coupling of Quantum Dots via Andreev Bound States in Semiconductor-Superconductor Nanowires.
    Liu CX; Wang G; Dvir T; Wimmer M
    Phys Rev Lett; 2022 Dec; 129(26):267701. PubMed ID: 36608192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron Waiting Times of a Cooper Pair Splitter.
    Walldorf N; Padurariu C; Jauho AP; Flindt C
    Phys Rev Lett; 2018 Feb; 120(8):087701. PubMed ID: 29542994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple Andreev reflections in a carbon nanotube quantum dot.
    Buitelaar MR; Belzig W; Nussbaumer T; Babić B; Bruder C; Schönenberger C
    Phys Rev Lett; 2003 Aug; 91(5):057005. PubMed ID: 12906627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooper pair splitting by means of graphene quantum dots.
    Tan ZB; Cox D; Nieminen T; Lähteenmäki P; Golubev D; Lesovik GB; Hakonen PJ
    Phys Rev Lett; 2015 Mar; 114(9):096602. PubMed ID: 25793837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scanning gate imaging of two coupled quantum dots in single-walled carbon nanotubes.
    Zhou X; Hedberg J; Miyahara Y; Grutter P; Ishibashi K
    Nanotechnology; 2014 Dec; 25(49):495703. PubMed ID: 25412585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite-bias Cooper pair splitting.
    Hofstetter L; Csonka S; Baumgartner A; Fülöp G; d'Hollosy S; Nygård J; Schönenberger C
    Phys Rev Lett; 2011 Sep; 107(13):136801. PubMed ID: 22026885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-range Cooper pair splitter with high entanglement production rate.
    Chen W; Shi DN; Xing DY
    Sci Rep; 2015 Jan; 5():7607. PubMed ID: 25556521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ballistic Graphene Cooper Pair Splitter.
    Pandey P; Danneau R; Beckmann D
    Phys Rev Lett; 2021 Apr; 126(14):147701. PubMed ID: 33891452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excess Kondo resonance in a quantum dot device with normal and superconducting leads: the physics of Andreev-normal co-tunneling.
    Sun QF; Guo H; Lin TH
    Phys Rev Lett; 2001 Oct; 87(17):176601. PubMed ID: 11690290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of coupled graphene-nanotube quantum devices.
    Engels S; Weber P; Terrés B; Dauber J; Meyer C; Volk C; Trellenkamp S; Wichmann U; Stampfer C
    Nanotechnology; 2013 Jan; 24(3):035204. PubMed ID: 23263231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suspended nanowires as mechanically controlled Rashba spin splitters.
    Shekhter RI; Entin-Wohlman O; Aharony A
    Phys Rev Lett; 2013 Oct; 111(17):176602. PubMed ID: 24206510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooper pair splitting controlled by a temperature gradient.
    Golubev DS; Zaikin AD
    Beilstein J Nanotechnol; 2023; 14():61-67. PubMed ID: 36761676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.