These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 20366659)

  • 1. Diffusion in Al-Cu melts studied by time-resolved X-ray radiography.
    Zhang B; Griesche A; Meyer A
    Phys Rev Lett; 2010 Jan; 104(3):035902. PubMed ID: 20366659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Note: X-ray radiography for measuring chemical diffusion in metallic melts.
    Griesche A; Zhang B; Solórzano E; Garcia-Moreno F
    Rev Sci Instrum; 2010 May; 81(5):056104. PubMed ID: 20515181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interdiffusion in liquid Al-Cu and Ni-Cu alloys.
    Cheng H; Lü YJ; Chen M
    J Chem Phys; 2009 Jul; 131(4):044502. PubMed ID: 19655889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ studies of mass transport in liquid alloys by means of neutron radiography.
    Kargl F; Engelhardt M; Yang F; Weis H; Schmakat P; Schillinger B; Griesche A; Meyer A
    J Phys Condens Matter; 2011 Jun; 23(25):254201. PubMed ID: 21654050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self- and interdiffusion in dilute liquid germanium-based alloys.
    Weis H; Kargl F; Kolbe M; Koza MM; Unruh T; Meyer A
    J Phys Condens Matter; 2019 Nov; 31(45):455101. PubMed ID: 31342943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic properties of Al-Mn, Al-Cu, and Al-Fe-Cu melts and their relations to liquid and quasicrystal structure.
    Zaitsev AI; Zaitseva NE; Shimko RY; Arutyunyan NA; Dunaev SF; Kraposhin VS; Lam HT
    J Phys Condens Matter; 2008 Mar; 20(11):114121. PubMed ID: 21694214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ Measurement of Thermodiffusion in Liquid Alloys.
    Sondermann E; Kargl F; Meyer A
    Phys Rev Lett; 2019 Dec; 123(25):255902. PubMed ID: 31922811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel gravity-assisted automatic docking device for studying diffusion in liquid metal melts assisted by a strong static magnetic field.
    Liu Y; Lin W; Zhou B; Zheng T; Zhong Y; Zhang L
    Rev Sci Instrum; 2021 Sep; 92(9):094903. PubMed ID: 34598506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bulk and surface properties of liquid Al-Cr and Cr-Ni alloys.
    Novakovic R
    J Phys Condens Matter; 2011 Jun; 23(23):235107. PubMed ID: 21613711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Investigation of Microstructural Evolution and Intermetallic Compounds Formation at Liquid Al/Solid Cu Interface by Synchrotron X-ray Radiography.
    Cao F; Wang R; Zhang P; Wang T; Song K
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nb/Sn Liquid-Solid Reactive Diffusion Couples and Their Application to Determination of Phase Equilibria and Interdiffusion Coefficients of Nb-Sn Binary System.
    Zhang J; Zhong J; Li Q; Zhang L
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multi-slice sliding cell technique for diffusion measurements in liquid metals.
    Zhong L; Hu J; Geng Y; Zhu C; Zhang B
    Rev Sci Instrum; 2017 Sep; 88(9):093905. PubMed ID: 28964252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A molecular dynamics examination of the relationship between self-diffusion and viscosity in liquid metals.
    Lü Y; Cheng H; Chen M
    J Chem Phys; 2012 Jun; 136(21):214505. PubMed ID: 22697556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of interaction volume on X-ray line-scans across an ultrasonically consolidated aluminum/copper interface.
    Mueller JE; Gillespie JW; Advani SG
    Scanning; 2013; 35(5):327-35. PubMed ID: 23254952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microstructural changes to AlCu6Ni1 alloy after prolonged annealing at elevated temperature.
    Wierzbińska M; Sieniawski J
    J Microsc; 2010 Mar; 237(3):516-20. PubMed ID: 20500428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stress and interdiffusion during molecular beam epitaxy of Fe on As-rich GaAs(001).
    Ashraf T; Gusenbauer C; Stangl J; Hesser G; Wegscheider M; Koch R
    J Phys Condens Matter; 2011 Feb; 23(4):042001. PubMed ID: 21406874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-diffusivity and interdiffusivity of molten aluminum-copper alloys under pressure, derived from molecular dynamics.
    Rudd RE; Cabot WH; Caspersen KJ; Greenough JA; Richards DF; Streitz FH; Miller PL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031202. PubMed ID: 22587084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated Development of an Accurate Diffusion Database in Fcc AlCoCrFeNi High-Entropy Alloys from a Big Dataset of Composition Profiles.
    Zhong J; Li Q; Deng C; Zhang L
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First principles calculation of the interdiffusion coefficient in binary alloys.
    Van der Ven A; Ceder G
    Phys Rev Lett; 2005 Feb; 94(4):045901. PubMed ID: 15783573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Vacancy Defect Content on the Interdiffusion of Cubic and Hexagonal SiC/Al Interfaces: A Molecular Dynamics Study.
    Tahani M; Postek E; Motevalizadeh L; Sadowski T
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.