These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 20366781)

  • 1. Anomalous Hanle effect due to optically created transverse overhauser field in single InAs/GaAs quantum dots.
    Krebs O; Maletinsky P; Amand T; Urbaszek B; Lemaître A; Voisin P; Marie X; Imamoglu A
    Phys Rev Lett; 2010 Feb; 104(5):056603. PubMed ID: 20366781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Hanle effect and electron spin polarization in InAs/GaAs quantum dots up to room temperature.
    Beyer J; Buyanova IA; Suraprapapich S; Tu CW; Chen WM
    Nanotechnology; 2012 Apr; 23(13):135705. PubMed ID: 22421164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of applied magnetic fields and hydrostatic pressure on the optical transitions in self-assembled InAs/GaAs quantum dots.
    Duque CA; Porras-Montenegro N; Barticevic Z; Pacheco M; Oliveira LE
    J Phys Condens Matter; 2006 Feb; 18(6):1877-84. PubMed ID: 21697562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical pumping of the electronic and nuclear spin of single charge-tunable quantum dots.
    Bracker AS; Stinaff EA; Gammon D; Ware ME; Tischler JG; Shabaev A; Efros AL; Park D; Gershoni D; Korenev VL; Merkulov IA
    Phys Rev Lett; 2005 Feb; 94(4):047402. PubMed ID: 15783594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large nuclear overhauser fields detected in vertically coupled double quantum dots.
    Baugh J; Kitamura Y; Ono K; Tarucha S
    Phys Rev Lett; 2007 Aug; 99(9):096804. PubMed ID: 17931028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for the light hole in GaAs/AlGaAs quantum wells from optically-pumped NMR and Hanle curve measurements.
    Sesti EL; Worthoff WA; Wheeler DD; Suter D; Hayes SE
    J Magn Reson; 2014 Sep; 246():130-5. PubMed ID: 25128778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of nuclear spin bath fluctuations in self-assembled quantum dots induced by inhomogeneous strain.
    Chekhovich EA; Hopkinson M; Skolnick MS; Tartakovskii AI
    Nat Commun; 2015 Feb; 6():6348. PubMed ID: 25704639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optically induced coupling of two magnetic dopant spins by a photoexcited hole in a Mn-doped InAs/GaAs quantum dot.
    Krebs O; Lemaître A
    Phys Rev Lett; 2013 Nov; 111(18):187401. PubMed ID: 24237560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quadrupolar and anisotropy effects on dephasing in two-electron spin qubits in GaAs.
    Botzem T; McNeil RP; Mol JM; Schuh D; Bougeard D; Bluhm H
    Nat Commun; 2016 Apr; 7():11170. PubMed ID: 27079269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear magnetization in gallium arsenide quantum dots at zero magnetic field.
    Sallen G; Kunz S; Amand T; Bouet L; Kuroda T; Mano T; Paget D; Krebs O; Marie X; Sakoda K; Urbaszek B
    Nat Commun; 2014; 5():3268. PubMed ID: 24500329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous quantum-confined Stark effects in stacked InAs/GaAs self-assembled quantum dots.
    Sheng W; Leburton JP
    Phys Rev Lett; 2002 Apr; 88(16):167401. PubMed ID: 11955264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large nuclear spin polarization in gate-defined quantum dots using a single-domain nanomagnet.
    Petersen G; Hoffmann EA; Schuh D; Wegscheider W; Giedke G; Ludwig S
    Phys Rev Lett; 2013 Apr; 110(17):177602. PubMed ID: 23679779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman coherence beats from entangled polarization eigenstates in InAs quantum dots.
    Lenihan AS; Gurudev Dutt MV; Steel DG; Ghosh S; Bhattacharya PK
    Phys Rev Lett; 2002 Jun; 88(22):223601. PubMed ID: 12059418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exciton Fine-Structure Splitting in Self-Assembled Lateral InAs/GaAs Quantum-Dot Molecular Structures.
    Fillipov S; Puttisong Y; Huang Y; Buyanova IA; Suraprapapich S; Tu CW; Chen WM
    ACS Nano; 2015 Jun; 9(6):5741-9. PubMed ID: 25965972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast control of nuclear spin polarization in an optically pumped single quantum dot.
    Makhonin MN; Kavokin KV; Senellart P; Lemaître A; Ramsay AJ; Skolnick MS; Tartakovskii AI
    Nat Mater; 2011 Aug; 10(11):844-8. PubMed ID: 21874005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct observation of the electron spin relaxation induced by nuclei in quantum dots.
    Braun PF; Marie X; Lombez L; Urbaszek B; Amand T; Renucci P; Kalevich VK; Kavokin KV; Krebs O; Voisin P; Masumoto Y
    Phys Rev Lett; 2005 Mar; 94(11):116601. PubMed ID: 15903877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Knight-field-enabled nuclear spin polarization in single quantum dots.
    Lai CW; Maletinsky P; Badolato A; Imamoglu A
    Phys Rev Lett; 2006 Apr; 96(16):167403. PubMed ID: 16712275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppression of Zeeman gradients by nuclear polarization in double quantum dots.
    Frolov SM; Danon J; Nadj-Perge S; Zuo K; van Tilburg JW; Pribiag VS; van den Berg JW; Bakkers EP; Kouwenhoven LP
    Phys Rev Lett; 2012 Dec; 109(23):236805. PubMed ID: 23368241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear spin nanomagnet in an optically excited quantum dot.
    Korenev VL
    Phys Rev Lett; 2007 Dec; 99(25):256405. PubMed ID: 18233538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interplay between Zeeman splitting and spin-orbit coupling in InAs nanowires.
    Kim BK; Choi SJ; Shin JC; Kim M; Ahn YH; Sim HS; Kim JJ; Bae MH
    Nanoscale; 2018 Dec; 10(48):23175-23181. PubMed ID: 30516777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.