These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 20366867)
1. Predicted mobility edges in one-dimensional incommensurate optical lattices: an exactly solvable model of anderson localization. Biddle J; Das Sarma S Phys Rev Lett; 2010 Feb; 104(7):070601. PubMed ID: 20366867 [TBL] [Abstract][Full Text] [Related]
2. Phase diagram and commensurate-incommensurate transitions in the phase field crystal model with an external pinning potential. Achim CV; Karttunen M; Elder KR; Granato E; Ala-Nissila T; Ying SC Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021104. PubMed ID: 17025390 [TBL] [Abstract][Full Text] [Related]
3. Nearest neighbor tight binding models with an exact mobility edge in one dimension. Ganeshan S; Pixley JH; Das Sarma S Phys Rev Lett; 2015 Apr; 114(14):146601. PubMed ID: 25910146 [TBL] [Abstract][Full Text] [Related]
4. Anomalously suppressed localization in the two-channel Anderson model. Nguyen BP; Kim K J Phys Condens Matter; 2012 Apr; 24(13):135303. PubMed ID: 22406739 [TBL] [Abstract][Full Text] [Related]
5. Anderson localization of pairs in bichromatic optical lattices. Dufour G; Orso G Phys Rev Lett; 2012 Oct; 109(15):155306. PubMed ID: 23102328 [TBL] [Abstract][Full Text] [Related]
6. Quantum phase transitions and phase diagram for a one-dimensional p-wave superconductor with an incommensurate potential. Cai X J Phys Condens Matter; 2014 Apr; 26(15):155701. PubMed ID: 24675766 [TBL] [Abstract][Full Text] [Related]
7. Topological superconductor to Anderson localization transition in one-dimensional incommensurate lattices. Cai X; Lang LJ; Chen S; Wang Y Phys Rev Lett; 2013 Apr; 110(17):176403. PubMed ID: 23679750 [TBL] [Abstract][Full Text] [Related]
8. Interactions and Mobility Edges: Observing the Generalized Aubry-André Model. An FA; Padavić K; Meier EJ; Hegde S; Ganeshan S; Pixley JH; Vishveshwara S; Gadway B Phys Rev Lett; 2021 Jan; 126(4):040603. PubMed ID: 33576679 [TBL] [Abstract][Full Text] [Related]
9. Anderson transition in low-dimensional disordered systems driven by long-range nonrandom hopping. Rodríguez A; Malyshev VA; Sierra G; Martín-Delgado MA; Rodríguez-Laguna J; Domínguez-Adame F Phys Rev Lett; 2003 Jan; 90(2):027404. PubMed ID: 12570579 [TBL] [Abstract][Full Text] [Related]
10. Boltzmann-type approach to transport in weakly interacting one-dimensional fermionic systems. Bartsch C; Gemmer J Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041103. PubMed ID: 22680416 [TBL] [Abstract][Full Text] [Related]
11. Anderson Localization and the Quantum Phase Diagram of Three Dimensional Disordered Dirac Semimetals. Pixley JH; Goswami P; Das Sarma S Phys Rev Lett; 2015 Aug; 115(7):076601. PubMed ID: 26317736 [TBL] [Abstract][Full Text] [Related]
12. Topological quantum phase transitions on the kagomé and square-octagon lattices. Liu XP; Chen WC; Wang YF; Gong CD J Phys Condens Matter; 2013 Jul; 25(30):305602. PubMed ID: 23824482 [TBL] [Abstract][Full Text] [Related]
13. Exact New Mobility Edges between Critical and Localized States. Zhou XC; Wang Y; Poon TJ; Zhou Q; Liu XJ Phys Rev Lett; 2023 Oct; 131(17):176401. PubMed ID: 37955469 [TBL] [Abstract][Full Text] [Related]
14. Family of exactly solvable models with an ultimate quantum paramagnetic ground state. Schmidt KP; Laad M Phys Rev Lett; 2010 Jun; 104(23):237201. PubMed ID: 20867263 [TBL] [Abstract][Full Text] [Related]
15. Quantum Adiabatic Doping with Incommensurate Optical Lattices. Lin J; Nan J; Luo Y; Yao XC; Li X Phys Rev Lett; 2019 Dec; 123(23):233603. PubMed ID: 31868469 [TBL] [Abstract][Full Text] [Related]
17. Localized Majorana-Like Modes in a Number-Conserving Setting: An Exactly Solvable Model. Iemini F; Mazza L; Rossini D; Fazio R; Diehl S Phys Rev Lett; 2015 Oct; 115(15):156402. PubMed ID: 26550737 [TBL] [Abstract][Full Text] [Related]
18. Adiabaticity and localization in one-dimensional incommensurate lattices. Edwards EE; Beeler M; Hong T; Rolston SL Phys Rev Lett; 2008 Dec; 101(26):260402. PubMed ID: 19437625 [TBL] [Abstract][Full Text] [Related]
19. One-Dimensional Quasiperiodic Mosaic Lattice with Exact Mobility Edges. Wang Y; Xia X; Zhang L; Yao H; Chen S; You J; Zhou Q; Liu XJ Phys Rev Lett; 2020 Nov; 125(19):196604. PubMed ID: 33216579 [TBL] [Abstract][Full Text] [Related]
20. Tunable band topology reflected by fractional quantum Hall States in two-dimensional lattices. Wang D; Liu Z; Cao J; Fan H Phys Rev Lett; 2013 Nov; 111(18):186804. PubMed ID: 24237549 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]