These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 20366933)

  • 1. Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit.
    Bartalini S; Borri S; Cancio P; Castrillo A; Galli I; Giusfredi G; Mazzotti D; Gianfrani L; De Natale P
    Phys Rev Lett; 2010 Feb; 104(8):083904. PubMed ID: 20366933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phonon-Limited-Linewidth of Brillouin Lasers at Cryogenic Temperatures.
    Suh MG; Yang QF; Vahala KJ
    Phys Rev Lett; 2017 Oct; 119(14):143901. PubMed ID: 29053303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum noise and its evasion in feedback oscillators.
    Loughlin HA; Sudhir V
    Nat Commun; 2023 Nov; 14(1):7083. PubMed ID: 37925495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rate equation modeling of the frequency noise and the intrinsic spectral linewidth in quantum cascade lasers.
    Wang XG; Grillot F; Wang C
    Opt Express; 2018 Feb; 26(3):2325-2334. PubMed ID: 29401772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-quenching of the semiconductor laser linewidth below the Schawlow-Townes limit by using optical feedback.
    Shevy Y; Iannelli J; Kitching J; Yariv A
    Opt Lett; 1992 May; 17(9):661-3. PubMed ID: 19794590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-noise Brillouin laser on a chip at 1064 nm.
    Li J; Lee H; Vahala KJ
    Opt Lett; 2014 Jan; 39(2):287-90. PubMed ID: 24562128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theory of intrinsic linewidth based on fluctuation-dissipation balance for thermal photons in THz quantum-cascade lasers.
    Yamanishi M
    Opt Express; 2012 Dec; 20(27):28465-78. PubMed ID: 23263082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical linewidth of a passively mode-locked semiconductor laser.
    Habruseva T; O'Donoghue S; Rebrova N; Kéfélian F; Hegarty SP; Huyet G
    Opt Lett; 2009 Nov; 34(21):3307-9. PubMed ID: 19881576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consequences of quantum noise control for the relaxation resonance frequency and phase noise in heterogeneous Silicon/III-V lasers.
    Kim D; Harfouche M; Wang H; Santis CT; Vilenchik Y; Satyan N; Rakuljic G; Yariv A
    Sci Rep; 2022 Jan; 12(1):312. PubMed ID: 35013333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative test of general theories of the intrinsic laser linewidth.
    Cerjan A; Pick A; Chong YD; Johnson SG; Douglas Stone A
    Opt Express; 2015 Nov; 23(22):28316-40. PubMed ID: 26561103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linewidth enhancement in spasers and plasmonic nanolasers.
    Ginzburg P; Zayats AV
    Opt Express; 2013 Jan; 21(2):2147-53. PubMed ID: 23389195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active linewidth-narrowing of a mid-infrared quantum cascade laser without optical reference.
    Tombez L; Schilt S; Hofstetter D; Südmeyer T
    Opt Lett; 2013 Dec; 38(23):5079-82. PubMed ID: 24281514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency noise of free-running 4.6 μm distributed feedback quantum cascade lasers near room temperature.
    Tombez L; Di Francesco J; Schilt S; Di Domenico G; Faist J; Thomann P; Hofstetter D
    Opt Lett; 2011 Aug; 36(16):3109-11. PubMed ID: 21847176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring frequency noise and intrinsic linewidth of a room-temperature DFB quantum cascade laser.
    Bartalini S; Borri S; Galli I; Giusfredi G; Mazzotti D; Edamura T; Akikusa N; Yamanishi M; De Natale P
    Opt Express; 2011 Sep; 19(19):17996-8003. PubMed ID: 21935165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of the intrinsic linewidth of terahertz quantum cascade lasers using a near-infrared frequency comb.
    Ravaro M; Barbieri S; Santarelli G; Jagtap V; Manquest C; Sirtori C; Khanna SP; Linfield EH
    Opt Express; 2012 Nov; 20(23):25654-61. PubMed ID: 23187384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadening the optical bandwidth of quantum cascade lasers using RF noise current perturbations.
    Pinto THP; Kirkbride JMR; Ritchie GAD
    Opt Lett; 2018 Apr; 43(8):1931-1934. PubMed ID: 29652402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All-electrical frequency noise reduction and linewidth narrowing in quantum cascade lasers.
    Sergachev I; Maulini R; Bismuto A; Blaser S; Gresch T; Bidaux Y; Müller A; Schilt S; Südmeyer T
    Opt Lett; 2014 Nov; 39(22):6411-4. PubMed ID: 25490481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency-stabilized laser-diode-pumped Nd:YAG laser.
    Shoemaker D; Brillet A; Man CN; Crégut O; Kerr G
    Opt Lett; 1989 Jun; 14(12):609-11. PubMed ID: 19752911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Passive intrinsic-linewidth narrowing of ultraviolet extended-cavity diode laser by weak optical feedback.
    Samutpraphoot P; Weber S; Lin Q; Gangloff D; Bylinskii A; Braverman B; Kawasaki A; Raab C; Kaenders W; Vuletić V
    Opt Express; 2014 May; 22(10):11592-9. PubMed ID: 24921280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Injection Locking of a Semiconductor Double Quantum Dot Micromaser.
    Liu YY; Stehlik J; Gullans MJ; Taylor JM; Petta JR
    Phys Rev A; 2015 Nov; 92(5):. PubMed ID: 28127226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.