These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 20366943)

  • 1. Coherent terahertz sound amplification and spectral line narrowing in a stark ladder superlattice.
    Beardsley RP; Akimov AV; Henini M; Kent AJ
    Phys Rev Lett; 2010 Feb; 104(8):085501. PubMed ID: 20366943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic phonon emission from a weakly coupled superlattice under vertical electron transport: observation of phonon resonance.
    Kent AJ; Kini RN; Stanton NM; Henini M; Glavin BA; Kochelap VA; Linnik TL
    Phys Rev Lett; 2006 Jun; 96(21):215504. PubMed ID: 16803248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strong Amplification of Coherent Acoustic Phonons by Intraminiband Currents in a Semiconductor Superlattice.
    Shinokita K; Reimann K; Woerner M; Elsaesser T; Hey R; Flytzanis C
    Phys Rev Lett; 2016 Feb; 116(7):075504. PubMed ID: 26943546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terahertz Driven Amplification of Coherent Optical Phonons in GaAs Coupled to a Metasurface.
    Woerner M; Somma C; Reimann K; Elsaesser T; Liu PQ; Yang Y; Reno JL; Brener I
    Phys Rev Lett; 2019 Mar; 122(10):107402. PubMed ID: 30932659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic to extrinsic phonon lifetime transition in a GaAs-AlAs superlattice.
    Hofmann F; Garg J; Maznev AA; Jandl A; Bulsara M; Fitzgerald EA; Chen G; Nelson KA
    J Phys Condens Matter; 2013 Jul; 25(29):295401. PubMed ID: 23817884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coherent phonon optics in a chip with an electrically controlled active device.
    Poyser CL; Akimov AV; Campion RP; Kent AJ
    Sci Rep; 2015 Feb; 5():8279. PubMed ID: 25652241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bloch oscillations of THz acoustic phonons in coupled nanocavity structures.
    Lanzillotti-Kimura ND; Fainstein A; Perrin B; Jusserand B; Mauguin O; Largeau L; Lemaître A
    Phys Rev Lett; 2010 May; 104(19):197402. PubMed ID: 20866997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong optical-mechanical coupling in a vertical GaAs/AlAs microcavity for subterahertz phonons and near-infrared light.
    Fainstein A; Lanzillotti-Kimura ND; Jusserand B; Perrin B
    Phys Rev Lett; 2013 Jan; 110(3):037403. PubMed ID: 23373951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonant crossover of terahertz loss to the gain of a Bloch oscillating InAs/AlSb superlattice.
    Savvidis PG; Kolasa B; Lee G; Allen SJ
    Phys Rev Lett; 2004 May; 92(19):196802. PubMed ID: 15169430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultracompact interference phonon nanocapacitor for storage and lasing of coherent terahertz lattice waves.
    Han H; Li B; Volz S; Kosevich YA
    Phys Rev Lett; 2015 Apr; 114(14):145501. PubMed ID: 25910135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study of low energy radiation response of AlAs, GaAs and GaAs/AlAs superlattice and the damage effects on their electronic structures.
    Jiang M; Xiao HY; Peng SM; Yang GX; Liu ZJ; Zu XT
    Sci Rep; 2018 Jan; 8(1):2012. PubMed ID: 29386543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Giant Photoelasticity of Polaritons for Detection of Coherent Phonons in a Superlattice with Quantum Sensitivity.
    Kobecki M; Scherbakov AV; Kukhtaruk SM; Yaremkevich DD; Henksmeier T; Trapp A; Reuter D; Gusev VE; Akimov AV; Bayer M
    Phys Rev Lett; 2022 Apr; 128(15):157401. PubMed ID: 35499885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupled bloch-phonon oscillations in semiconductor superlattices.
    Dekorsy T; Bartels A; Kurz H; Kohler K; Hey R; Ploog K
    Phys Rev Lett; 2000 Jul; 85(5):1080-3. PubMed ID: 10991479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Terahertz radiation induced chaotic electron transport in semiconductor superlattices with a tilted magnetic field.
    Wang C; Wang F; Cao JC
    Chaos; 2014 Sep; 24(3):033109. PubMed ID: 25273189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noise-enhanced chaos in a weakly coupled GaAs/(Al,Ga)As superlattice.
    Yin Z; Song H; Zhang Y; Ruiz-García M; Carretero M; Bonilla LL; Biermann K; Grahn HT
    Phys Rev E; 2017 Jan; 95(1-1):012218. PubMed ID: 28208354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical Fano-Like Interference between Rabi Oscillations and Coherent Phonons in a Semiconductor Microcavity System.
    Yoshino S; Oohata G; Mizoguchi K
    Phys Rev Lett; 2015 Oct; 115(15):157402. PubMed ID: 26550752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phonon-induced polariton superlattices.
    de Lima MM; van der Poel M; Santos PV; Hvam JM
    Phys Rev Lett; 2006 Jul; 97(4):045501. PubMed ID: 16907587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parametric amplification of optical phonons.
    Cartella A; Nova TF; Fechner M; Merlin R; Cavalleri A
    Proc Natl Acad Sci U S A; 2018 Nov; 115(48):12148-12151. PubMed ID: 30429325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective optical generation of coherent acoustic nanocavity modes.
    Pascual Winter MF; Rozas G; Fainstein A; Jusserand B; Perrin B; Huynh A; Vaccaro PO; Saravanan S
    Phys Rev Lett; 2007 Jun; 98(26):265501. PubMed ID: 17678102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory of coherent phonons in carbon nanotubes and graphene nanoribbons.
    Sanders GD; Nugraha AR; Sato K; Kim JH; Kono J; Saito R; Stanton CJ
    J Phys Condens Matter; 2013 Apr; 25(14):144201. PubMed ID: 23478856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.