These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 2036709)

  • 1. Short-time-scale left ventricular systolic dynamics. Evidence for a common mechanism in both left ventricular chamber and heart muscle mechanics.
    Campbell KB; Shroff SG; Kirkpatrick RD
    Circ Res; 1991 Jun; 68(6):1532-48. PubMed ID: 2036709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic left ventricular elastance: a model for integrating cardiac muscle contraction into ventricular pressure-volume relationships.
    Campbell KB; Simpson AM; Campbell SG; Granzier HL; Slinker BK
    J Appl Physiol (1985); 2008 Apr; 104(4):958-75. PubMed ID: 18048589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic myocardial contractile parameters from left ventricular pressure-volume measurements.
    Campbell KB; Wu Y; Simpson AM; Kirkpatrick RD; Shroff SG; Granzier HL; Slinker BK
    Am J Physiol Heart Circ Physiol; 2005 Jul; 289(1):H114-30. PubMed ID: 15961371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short time-scale LV systolic dynamics: pressure vs. volume clamps and effect of activation.
    Shroff SG; Campbell KB; Kirkpatrick RD
    Am J Physiol; 1993 Mar; 264(3 Pt 2):H946-59. PubMed ID: 8456995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Similarities between dynamic elastance of left ventricular chamber and papillary muscle of rabbit heart.
    Campbell KB; Taheri H; Kirkpatrick RD; Burton T; Hunter WC
    Am J Physiol; 1993 Jun; 264(6 Pt 2):H1926-41. PubMed ID: 8322923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of force-length area with oxygen consumption in ferret papillary muscle.
    Hisano R; Cooper G
    Circ Res; 1987 Sep; 61(3):318-28. PubMed ID: 3621495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressure response to quick volume changes in tetanized isolated ferret hearts.
    Campbell KB; Rahimi AR; Bell DL; Kirkpatrick RD; Ringo JA
    Am J Physiol; 1989 Jul; 257(1 Pt 2):H38-46. PubMed ID: 2750948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contractile-based model interpretation of pressure-volume dynamics in the constantly activated (Ba2+) isolated heart.
    Campbell KB; Campbell LW; Pinto JE; Burton TD
    Ann Biomed Eng; 1994; 22(6):550-67. PubMed ID: 7872568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Valvular-ventricular interaction: importance of the mitral apparatus in canine left ventricular systolic performance.
    Hansen DE; Cahill PD; DeCampli WM; Harrison DC; Derby GC; Mitchell RS; Miller DC
    Circulation; 1986 Jun; 73(6):1310-20. PubMed ID: 3698258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence and quantitation of left ventricular systolic resistance.
    Shroff SG; Janicki JS; Weber KT
    Am J Physiol; 1985 Aug; 249(2 Pt 2):H358-70. PubMed ID: 4025568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of papillary muscle function in the intact heart.
    Marzilli M; Sabbah HN; Goldstein S; Stein PD
    Circulation; 1985 May; 71(5):1017-22. PubMed ID: 3986972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A computational study of a thin-walled three-dimensional left ventricle during early systole.
    Yoganathan AP; Lemmon JD; Kim YH; Walker PG; Levine RA; Vesier CC
    J Biomech Eng; 1994 Aug; 116(3):307-14. PubMed ID: 7799632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolated ventricular systolic interaction during transient reductions in left ventricular pressure.
    Woodard JC; Chow E; Farrar DJ
    Circ Res; 1992 May; 70(5):944-51. PubMed ID: 1568303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systolic mechanical properties of the left ventricle. Effects of volume and contractile state.
    Hunter WC; Janicki JS; Weber KT; Noordergraaf A
    Circ Res; 1983 Mar; 52(3):319-27. PubMed ID: 6825223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Further observations on modelling of the cardiovascular function in the electrical model.
    Juznic G; Peterec D; Jagodic A
    Bibl Cardiol; 1979; (37):195-208. PubMed ID: 508257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of crossbridge-mediated activation in the heart.
    Vandenboom R; Weihe EK; Hannon JD
    J Muscle Res Cell Motil; 2005; 26(4-5):247-57. PubMed ID: 16322913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explaining load dependence of ventricular contractile properties with a model of excitation-contraction coupling.
    Burkhoff D
    J Mol Cell Cardiol; 1994 Aug; 26(8):959-78. PubMed ID: 7799451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residual stress produced by ventricular volume reduction surgery has little effect on ventricular function and mechanics: a finite element model study.
    Guccione JM; Moonly SM; Wallace AW; Ratcliffe MB
    J Thorac Cardiovasc Surg; 2001 Sep; 122(3):592-9. PubMed ID: 11547315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prolonged ejection duration helps to maintain pump performance of the renal-hypertensive-diabetic rat heart: correlations between isolated papillary muscle function and ventricular performance in situ.
    Siri FM; Malhotra A; Factor SM; Sonnenblick EH; Fein FS
    Cardiovasc Res; 1997 Apr; 34(1):230-40. PubMed ID: 9217895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of changes in the aortic input impedance on systolic pressure-ejected volume relationships in the isolated supported canine left ventricle.
    Ishide N; Shimizu Y; Maruyama Y; Koiwa Y; Nunokawa T; Isoyama S; Kitaoka S; Tamaki K; Ino-Oka E; Takishima T
    Cardiovasc Res; 1980 Apr; 14(4):229-43. PubMed ID: 7427971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.