These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 20367254)

  • 21. Acceleration of chondrogenic differentiation of human mesenchymal stem cells by sustained growth factor release in 3D graphene oxide incorporated hydrogels.
    Shen H; Lin H; Sun AX; Song S; Wang B; Yang Y; Dai J; Tuan RS
    Acta Biomater; 2020 Mar; 105():44-55. PubMed ID: 32035282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxygen tension differentially regulates the functional properties of cartilaginous tissues engineered from infrapatellar fat pad derived MSCs and articular chondrocytes.
    Buckley CT; Vinardell T; Kelly DJ
    Osteoarthritis Cartilage; 2010 Oct; 18(10):1345-54. PubMed ID: 20650328
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis.
    Bosnakovski D; Mizuno M; Kim G; Takagi S; Okumura M; Fujinaga T
    Biotechnol Bioeng; 2006 Apr; 93(6):1152-63. PubMed ID: 16470881
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptome-Wide Analyses of Human Neonatal Articular Cartilage and Human Mesenchymal Stem Cell-Derived Cartilage Provide a New Molecular Target for Evaluating Engineered Cartilage.
    Somoza RA; Correa D; Labat I; Sternberg H; Forrest ME; Khalil AM; West MD; Tesar P; Caplan AI
    Tissue Eng Part A; 2018 Feb; 24(3-4):335-350. PubMed ID: 28602122
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chondrogenic potential of bone marrow- and adipose tissue-derived adult human mesenchymal stem cells.
    Ronzière MC; Perrier E; Mallein-Gerin F; Freyria AM
    Biomed Mater Eng; 2010; 20(3):145-58. PubMed ID: 20930322
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temporal and spatial changes in cartilage-matrix-specific gene expression in mesenchymal stem cells in response to dynamic compression.
    Haugh MG; Meyer EG; Thorpe SD; Vinardell T; Duffy GP; Kelly DJ
    Tissue Eng Part A; 2011 Dec; 17(23-24):3085-93. PubMed ID: 21870950
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture.
    Mauck RL; Yuan X; Tuan RS
    Osteoarthritis Cartilage; 2006 Feb; 14(2):179-89. PubMed ID: 16257243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells.
    Wang Y; Kim UJ; Blasioli DJ; Kim HJ; Kaplan DL
    Biomaterials; 2005 Dec; 26(34):7082-94. PubMed ID: 15985292
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chondrogenesis in a hyaluronic acid scaffold: comparison between chondrocytes and MSC from bone marrow and adipose tissue.
    Jakobsen RB; Shahdadfar A; Reinholt FP; Brinchmann JE
    Knee Surg Sports Traumatol Arthrosc; 2010 Oct; 18(10):1407-16. PubMed ID: 20020100
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Injectable microcarriers as human mesenchymal stem cell support and their application for cartilage and degenerated intervertebral disc repair.
    Bertolo A; Häfner S; Taddei AR; Baur M; Pötzel T; Steffen F; Stoyanov J
    Eur Cell Mater; 2015 Jan; 29():70-80; discujssion 80-1. PubMed ID: 25579755
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of the Chondrogenic Potential of Mesenchymal Stem Cells Derived from Bone Marrow and Umbilical Cord Blood Intended for Cartilage Tissue Engineering.
    Contentin R; Demoor M; Concari M; Desancé M; Audigié F; Branly T; Galéra P
    Stem Cell Rev Rep; 2020 Feb; 16(1):126-143. PubMed ID: 31745710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. BMP2 initiates chondrogenic lineage development of adult human mesenchymal stem cells in high-density culture.
    Schmitt B; Ringe J; Häupl T; Notter M; Manz R; Burmester GR; Sittinger M; Kaps C
    Differentiation; 2003 Dec; 71(9-10):567-77. PubMed ID: 14686954
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physioxia Has a Beneficial Effect on Cartilage Matrix Production in Interleukin-1 Beta-Inhibited Mesenchymal Stem Cell Chondrogenesis.
    Pattappa G; Schewior R; Hofmeister I; Seja J; Zellner J; Johnstone B; Docheva D; Angele P
    Cells; 2019 Aug; 8(8):. PubMed ID: 31434236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization and use of Equine Bone Marrow Mesenchymal Stem Cells in Equine Cartilage Engineering. Study of their Hyaline Cartilage Forming Potential when Cultured under Hypoxia within a Biomaterial in the Presence of BMP-2 and TGF-ß1.
    Branly T; Bertoni L; Contentin R; Rakic R; Gomez-Leduc T; Desancé M; Hervieu M; Legendre F; Jacquet S; Audigié F; Denoix JM; Demoor M; Galéra P
    Stem Cell Rev Rep; 2017 Oct; 13(5):611-630. PubMed ID: 28597211
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chondrogenesis by bone marrow-derived mesenchymal stem cells grown in chondrocyte-conditioned medium for auricular reconstruction.
    Zhao X; Hwang NS; Bichara DA; Saris DB; Malda J; Vacanti JP; Pomerantseva I; Sundback CA; Langer R; Anderson DG; Randolph MA
    J Tissue Eng Regen Med; 2017 Oct; 11(10):2763-2773. PubMed ID: 27256796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphogenetic signals from chondrocytes promote chondrogenic and osteogenic differentiation of mesenchymal stem cells.
    Hwang NS; Varghese S; Puleo C; Zhang Z; Elisseeff J
    J Cell Physiol; 2007 Aug; 212(2):281-4. PubMed ID: 17520697
    [TBL] [Abstract][Full Text] [Related]  

  • 37. TGF-β3-induced chondrogenesis in co-cultures of chondrocytes and mesenchymal stem cells on biodegradable scaffolds.
    Dahlin RL; Ni M; Meretoja VV; Kasper FK; Mikos AG
    Biomaterials; 2014 Jan; 35(1):123-32. PubMed ID: 24125773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improving chondrogenesis: potential and limitations of SOX9 gene transfer and mechanical stimulation for cartilage tissue engineering.
    Kupcsik L; Stoddart MJ; Li Z; Benneker LM; Alini M
    Tissue Eng Part A; 2010 Jun; 16(6):1845-55. PubMed ID: 20067399
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of pharmacologically active microcarriers releasing TGF-beta3 in cartilage formation in vivo by mesenchymal stem cells.
    Bouffi C; Thomas O; Bony C; Giteau A; Venier-Julienne MC; Jorgensen C; Montero-Menei C; Noël D
    Biomaterials; 2010 Sep; 31(25):6485-93. PubMed ID: 20570347
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering superficial zone chondrocytes from mesenchymal stem cells.
    Coates EE; Fisher JP
    Tissue Eng Part C Methods; 2014 Aug; 20(8):630-40. PubMed ID: 24279336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.