These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 20367257)

  • 1. Redox control in mammalian embryo development.
    Ufer C; Wang CC; Borchert A; Heydeck D; Kuhn H
    Antioxid Redox Signal; 2010 Sep; 13(6):833-75. PubMed ID: 20367257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the Nrf2 antioxidant pathway by microRNAs: New players in micromanaging redox homeostasis.
    Cheng X; Ku CH; Siow RC
    Free Radic Biol Med; 2013 Sep; 64():4-11. PubMed ID: 23880293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of redox environment in neurogenic development.
    Ostrakhovitch EA; Semenikhin OA
    Arch Biochem Biophys; 2013 Jun; 534(1-2):44-54. PubMed ID: 22910298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose-6-Phosphate Dehydrogenase, Redox Homeostasis and Embryogenesis.
    Chen PH; Tjong WY; Yang HC; Liu HY; Stern A; Chiu DT
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative stress, thiols, and redox profiles.
    Harris C; Hansen JM
    Methods Mol Biol; 2012; 889():325-46. PubMed ID: 22669675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lack of maternal Heat Shock Factor 1 results in multiple cellular and developmental defects, including mitochondrial damage and altered redox homeostasis, and leads to reduced survival of mammalian oocytes and embryos.
    Bierkamp C; Luxey M; Metchat A; Audouard C; Dumollard R; Christians E
    Dev Biol; 2010 Mar; 339(2):338-53. PubMed ID: 20045681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sphingolipid signaling and redox regulation.
    Won JS; Singh I
    Free Radic Biol Med; 2006 Jun; 40(11):1875-88. PubMed ID: 16716889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. L-gamma-Glutamyl-L-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)?
    Haddad JJ; Harb HL
    Mol Immunol; 2005 May; 42(9):987-1014. PubMed ID: 15829290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Roles of Glutathione Peroxidases during Embryo Development.
    Ufer C; Wang CC
    Front Mol Neurosci; 2011; 4():12. PubMed ID: 21847368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape homeostasis in virtual embryos.
    Andersen T; Newman R; Otter T
    Artif Life; 2009; 15(2):161-83. PubMed ID: 19199386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox regulation of inflammation: old elements, a new story.
    Lei Y; Wang K; Deng L; Chen Y; Nice EC; Huang C
    Med Res Rev; 2015 Mar; 35(2):306-40. PubMed ID: 25171147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and verification of redox-sensitive proteins in Arabidopsis thaliana.
    Wang H; Wang S; Xia Y
    Methods Mol Biol; 2012; 876():83-94. PubMed ID: 22576087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thioredoxin redox status assessment during embryonic development: the redox Western.
    Hansen JM
    Methods Mol Biol; 2012; 889():305-13. PubMed ID: 22669673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cysteine-mediated redox signalling in the mitochondria.
    Bak DW; Weerapana E
    Mol Biosyst; 2015 Mar; 11(3):678-97. PubMed ID: 25519845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing redox state and reactive oxygen species in circadian rhythmicity.
    König K; Galliardt H; Moore M; Treffon P; Seidel T; Dietz KJ
    Methods Mol Biol; 2014; 1158():239-71. PubMed ID: 24792057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of oxidative stress on embryonic development.
    Dennery PA
    Birth Defects Res C Embryo Today; 2007 Sep; 81(3):155-62. PubMed ID: 17963268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural dietary anti-cancer chemopreventive compounds: redox-mediated differential signaling mechanisms in cytoprotection of normal cells versus cytotoxicity in tumor cells.
    Nair S; Li W; Kong AN
    Acta Pharmacol Sin; 2007 Apr; 28(4):459-72. PubMed ID: 17376285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exercise, redox homeostasis and the epigenetic landscape.
    Dimauro I; Paronetto MP; Caporossi D
    Redox Biol; 2020 Aug; 35():101477. PubMed ID: 32127290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular redox homeostasis, reactive oxygen species and replicative ageing in Saccharomyces cerevisiae.
    Ayer A; Gourlay CW; Dawes IW
    FEMS Yeast Res; 2014 Feb; 14(1):60-72. PubMed ID: 24164795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal expression of transcriptional regulators in concert with the maternal-to-embryonic transition during bovine in vitro embryogenesis.
    Vigneault C; McGraw S; Sirard MA
    Reproduction; 2009 Jan; 137(1):13-21. PubMed ID: 18805820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.