These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 20368386)

  • 1. Counterpoint: Artificial legs do not make artificially fast running speeds possible.
    Kram R; Grabowski AM; McGowan CP; Brown MB; Herr HM
    J Appl Physiol (1985); 2010 Apr; 108(4):1012-4; discussion 1014; author reply 1020. PubMed ID: 20368386
    [No Abstract]   [Full Text] [Related]  

  • 2. Point: Artificial limbs do make artificially fast running speeds possible.
    Weyand PG; Bundle MW
    J Appl Physiol (1985); 2010 Apr; 108(4):1011-2; discussion 1014-5. PubMed ID: 20368385
    [No Abstract]   [Full Text] [Related]  

  • 3. Artificial limbs can enable artificially fast running.
    Buckley JG; Juniper MP
    J Appl Physiol (1985); 2010 Apr; 108(4):1016; author reply 1019-20. PubMed ID: 20368389
    [No Abstract]   [Full Text] [Related]  

  • 4. At high running speeds, power developed each step during the push appears to be sustained by elastic energy.
    Cavagna GA
    J Appl Physiol (1985); 2010 Apr; 108(4):1016; author reply 1019-20. PubMed ID: 20722083
    [No Abstract]   [Full Text] [Related]  

  • 5. The fastest runner on artificial legs: different limbs, similar function?
    Weyand PG; Bundle MW; McGowan CP; Grabowski A; Brown MB; Kram R; Herr H
    J Appl Physiol (1985); 2009 Sep; 107(3):903-11. PubMed ID: 19541739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A narrow focus on swing time and vertical ground reaction force.
    Morin JB
    J Appl Physiol (1985); 2010 Apr; 108(4):1017-8; author reply 1019-20. PubMed ID: 20722086
    [No Abstract]   [Full Text] [Related]  

  • 7. For forward running, study fore-aft forces.
    Adamczyk PG
    J Appl Physiol (1985); 2010 Apr; 108(4):1017; author reply 1019-20. PubMed ID: 20722085
    [No Abstract]   [Full Text] [Related]  

  • 8. "Net advantage" is more rooted in sport than science.
    Zelik KE
    J Appl Physiol (1985); 2010 Apr; 108(4):1016-7; author reply 1019-20. PubMed ID: 20722084
    [No Abstract]   [Full Text] [Related]  

  • 9. Maximum-speed curve-running biomechanics of sprinters with and without unilateral leg amputations.
    Taboga P; Kram R; Grabowski AM
    J Exp Biol; 2016 Mar; 219(Pt 6):851-8. PubMed ID: 26985053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional gait asymmetry of unilateral transfemoral amputees.
    Schaarschmidt M; Lipfert SW; Meier-Gratz C; Scholle HC; Seyfarth A
    Hum Mov Sci; 2012 Aug; 31(4):907-17. PubMed ID: 22248566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative study of oxygen consumption for conventional and energy-storing prosthetic feet in transfemoral amputees.
    Graham LE; Datta D; Heller B; Howitt J
    Clin Rehabil; 2008; 22(10-11):896-901. PubMed ID: 18955421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leg stiffness and sprint ability in amputee sprinters.
    Hobara H; Tominaga S; Umezawa S; Iwashita K; Okino A; Saito T; Usui F; Ogata T
    Prosthet Orthot Int; 2012 Sep; 36(3):312-7. PubMed ID: 22918908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy expenditure during ambulation in dysvascular and traumatic below-knee amputees: a comparison of five prosthetic feet.
    Torburn L; Powers CM; Guiterrez R; Perry J
    J Rehabil Res Dev; 1995 May; 32(2):111-9. PubMed ID: 7562650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Below-knee amputee running gait.
    Enoka RM; Miller DI; Burgess EM
    Am J Phys Med; 1982 Apr; 61(2):66-84. PubMed ID: 7072837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new methodology to measure the running biomechanics of amputees.
    Wilson JR; Asfour S; Abdelrahman KZ; Gailey R
    Prosthet Orthot Int; 2009 Sep; 33(3):218-29. PubMed ID: 19658012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of prosthetic foot design on sound limb loading in adults with unilateral below-knee amputations.
    Powers CM; Torburn L; Perry J; Ayyappa E
    Arch Phys Med Rehabil; 1994 Jul; 75(7):825-9. PubMed ID: 8024435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intention detection of gait initiation using EMG and kinematic data.
    Wentink EC; Beijen SI; Hermens HJ; Rietman JS; Veltink PH
    Gait Posture; 2013 Feb; 37(2):223-8. PubMed ID: 22917647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compensatory mechanism involving the knee joint of the intact limb during gait in unilateral below-knee amputees.
    Beyaert C; Grumillier C; Martinet N; Paysant J; André JM
    Gait Posture; 2008 Aug; 28(2):278-84. PubMed ID: 18295487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical analysis of ramp ambulation of transtibial amputees with an adaptive ankle foot system.
    Fradet L; Alimusaj M; Braatz F; Wolf SI
    Gait Posture; 2010 Jun; 32(2):191-8. PubMed ID: 20457526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compensatory mechanisms in below-knee amputee gait in response to increasing steady-state walking speeds.
    Silverman AK; Fey NP; Portillo A; Walden JG; Bosker G; Neptune RR
    Gait Posture; 2008 Nov; 28(4):602-9. PubMed ID: 18514526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.