BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 20368433)

  • 1. Dock3 induces axonal outgrowth by stimulating membrane recruitment of the WAVE complex.
    Namekata K; Harada C; Taya C; Guo X; Kimura H; Parada LF; Harada T
    Proc Natl Acad Sci U S A; 2010 Apr; 107(16):7586-91. PubMed ID: 20368433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dock3 stimulates axonal outgrowth via GSK-3β-mediated microtubule assembly.
    Namekata K; Harada C; Guo X; Kimura A; Kittaka D; Watanabe H; Harada T
    J Neurosci; 2012 Jan; 32(1):264-74. PubMed ID: 22219288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dock3 regulates BDNF-TrkB signaling for neurite outgrowth by forming a ternary complex with Elmo and RhoG.
    Namekata K; Watanabe H; Guo X; Kittaka D; Kawamura K; Kimura A; Harada C; Harada T
    Genes Cells; 2012 Aug; 17(8):688-97. PubMed ID: 22734669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dock6, a Dock-C subfamily guanine nucleotide exchanger, has the dual specificity for Rac1 and Cdc42 and regulates neurite outgrowth.
    Miyamoto Y; Yamauchi J; Sanbe A; Tanoue A
    Exp Cell Res; 2007 Feb; 313(4):791-804. PubMed ID: 17196961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dock GEFs and their therapeutic potential: neuroprotection and axon regeneration.
    Namekata K; Kimura A; Kawamura K; Harada C; Harada T
    Prog Retin Eye Res; 2014 Nov; 43():1-16. PubMed ID: 25016980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retrolinkin recruits the WAVE1 protein complex to facilitate BDNF-induced TrkB endocytosis and dendrite outgrowth.
    Xu C; Fu X; Zhu S; Liu JJ
    Mol Biol Cell; 2016 Nov; 27(21):3342-3356. PubMed ID: 27605705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific recognition of Rac2 and Cdc42 by DOCK2 and DOCK9 guanine nucleotide exchange factors.
    Kwofie MA; Skowronski J
    J Biol Chem; 2008 Feb; 283(6):3088-3096. PubMed ID: 18056264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel FERM domain including guanine nucleotide exchange factor is involved in Rac signaling and regulates neurite remodeling.
    Kubo T; Yamashita T; Yamaguchi A; Sumimoto H; Hosokawa K; Tohyama M
    J Neurosci; 2002 Oct; 22(19):8504-13. PubMed ID: 12351724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRMP-2 is involved in kinesin-1-dependent transport of the Sra-1/WAVE1 complex and axon formation.
    Kawano Y; Yoshimura T; Tsuboi D; Kawabata S; Kaneko-Kawano T; Shirataki H; Takenawa T; Kaibuchi K
    Mol Cell Biol; 2005 Nov; 25(22):9920-35. PubMed ID: 16260607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases.
    Ren Y; Li R; Zheng Y; Busch H
    J Biol Chem; 1998 Dec; 273(52):34954-60. PubMed ID: 9857026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of guanine nucleotide exchange and Rac-mediated signaling revealed by a dominant negative trio mutant.
    Debreceni B; Gao Y; Guo F; Zhu K; Jia B; Zheng Y
    J Biol Chem; 2004 Jan; 279(5):3777-86. PubMed ID: 14597635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of guanine nucleotide exchange factors (GEFs) for the Rap1 GTPase. Regulation of MR-GEF by M-Ras-GTP interaction.
    Rebhun JF; Castro AF; Quilliam LA
    J Biol Chem; 2000 Nov; 275(45):34901-8. PubMed ID: 10934204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dock3-NMDA receptor interaction as a target for glaucoma therapy.
    Kimura A; Namekata K; Guo X; Harada C; Harada T
    Histol Histopathol; 2017 Mar; 32(3):215-221. PubMed ID: 27615513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The guanine nucleotide exchange factor (GEF) Asef2 promotes dendritic spine formation via Rac activation and spinophilin-dependent targeting.
    Evans JC; Robinson CM; Shi M; Webb DJ
    J Biol Chem; 2015 Apr; 290(16):10295-308. PubMed ID: 25750125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CD147 regulates cancer migration via direct interaction with Annexin A2 and DOCK3-β-catenin-WAVE2 signaling.
    Cui HY; Wang SJ; Miao JY; Fu ZG; Feng F; Wu J; Yang XM; Chen ZN; Jiang JL
    Oncotarget; 2016 Feb; 7(5):5613-29. PubMed ID: 26716413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DOCK3-related neurodevelopmental syndrome: Biallelic intragenic deletion of DOCK3 in a boy with developmental delay and hypotonia.
    Iwata-Otsubo A; Ritter AL; Weckselbatt B; Ryan NR; Burgess D; Conlin LK; Izumi K
    Am J Med Genet A; 2018 Jan; 176(1):241-245. PubMed ID: 29130632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting the Dbl and dock-family RhoGEFs: a yeast-based assay to identify cell-active inhibitors of Rho-controlled pathways.
    Blangy A; Fort P
    Enzymes; 2013; 33 Pt A():169-91. PubMed ID: 25033805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a DOCK180-related guanine nucleotide exchange factor that is capable of mediating a positive feedback activation of Cdc42.
    Lin Q; Yang W; Baird D; Feng Q; Cerione RA
    J Biol Chem; 2006 Nov; 281(46):35253-62. PubMed ID: 16968698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dock-family exchange factors in cell migration and disease.
    Gadea G; Blangy A
    Eur J Cell Biol; 2014 Oct; 93(10-12):466-77. PubMed ID: 25022758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Role of Dock3 in axonal regeneration].
    Namekata K; Harada T
    Seikagaku; 2012 May; 84(5):368-73. PubMed ID: 22746061
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.