These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 20368683)

  • 1. Calibration of optically trapped nanotools.
    Carberry DM; Simpson SH; Grieve JA; Wang Y; Schäfer H; Steinhart M; Bowman R; Gibson GM; Padgett MJ; Hanna S; Miles MJ
    Nanotechnology; 2010 Apr; 21(17):175501. PubMed ID: 20368683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal motion of a holographically trapped SPM-like probe.
    Simpson SH; Hanna S
    Nanotechnology; 2009 Sep; 20(39):395710. PubMed ID: 19726835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time in situ calibration of an optically trapped probing system.
    Wan J; Huang Y; Jhiang S; Menq CH
    Appl Opt; 2009 Sep; 48(25):4832-41. PubMed ID: 19724324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minimum-variance Brownian motion control of an optically trapped probe.
    Huang Y; Zhang Z; Menq CH
    Appl Opt; 2009 Oct; 48(30):5871-80. PubMed ID: 19844327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic position and force measurement for multiple optically trapped particles using a high-speed active pixel sensor.
    Towrie M; Botchway SW; Clark A; Freeman E; Halsall R; Parker AW; Prydderch M; Turchetta R; Ward AD; Pollard MR
    Rev Sci Instrum; 2009 Oct; 80(10):103704. PubMed ID: 19895067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction and calibration of an optical trap on a fluorescence optical microscope.
    Lee WM; Reece PJ; Marchington RF; Metzger NK; Dholakia K
    Nat Protoc; 2007; 2(12):3226-38. PubMed ID: 18079723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical force sensor array in a microfluidic device based on holographic optical tweezers.
    Uhrig K; Kurre R; Schmitz C; Curtis JE; Haraszti T; Clemen AE; Spatz JP
    Lab Chip; 2009 Mar; 9(5):661-8. PubMed ID: 19224015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 10-fold detection range increase in quadrant-photodiode position sensing for photonic force microscope.
    Perrone S; Volpe G; Petrov D
    Rev Sci Instrum; 2008 Oct; 79(10):106101. PubMed ID: 19044745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced optical tweezers for the study of cellular and molecular biomechanics.
    Brouhard GJ; Schek HT; Hunt AJ
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):121-5. PubMed ID: 12617534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate noncontact calibration of colloidal probe sensitivities in atomic force microscopy.
    Chung KH; Shaw GA; Pratt JR
    Rev Sci Instrum; 2009 Jun; 80(6):065107. PubMed ID: 19566226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic formation of optically trapped microstructure arrays for biosensor applications.
    Daria VR; Rodrigo PJ; Glückstad J
    Biosens Bioelectron; 2004 Jun; 19(11):1439-44. PubMed ID: 15093215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface imaging beyond the diffraction limit with optically trapped spheres.
    Friedrich L; Rohrbach A
    Nat Nanotechnol; 2015 Dec; 10(12):1064-9. PubMed ID: 26414196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a precision indentation and scratching system with a tool force and displacement control module.
    Park JJ; Kwon K; Bang J; Cho N; Han CS; Choi NS
    Rev Sci Instrum; 2007 Apr; 78(4):045102. PubMed ID: 17477688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micromanipulation by "multiple" optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope.
    Visscher K; Brakenhoff GJ; Krol JJ
    Cytometry; 1993; 14(2):105-14. PubMed ID: 8440145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-chip thermal calibration with 8 CB liquid crystal of micro-thermal device.
    Gillot F; Morin FO; Arata HF; Guégan R; Tanaka H; Fujita H
    Lab Chip; 2007 Nov; 7(11):1600-2. PubMed ID: 17960292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical properties of single motor molecules studied by three-dimensional thermal force probing in optical tweezers.
    Jeney S; Stelzer EH; Grubmüller H; Florin EL
    Chemphyschem; 2004 Aug; 5(8):1150-8. PubMed ID: 15446737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical tweezers based force measurement system for quantitating binding interactions: system design and application for the study of bacterial adhesion.
    Fällman E; Schedin S; Jass J; Andersson M; Uhlin BE; Axner O
    Biosens Bioelectron; 2004 Jun; 19(11):1429-37. PubMed ID: 15093214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microdisplacement sensor using an optically trapped microprobe based on the interference scale.
    Michihata M; Hayashi T; Nakai D; Takaya Y
    Rev Sci Instrum; 2010 Jan; 81(1):015107. PubMed ID: 20113129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of adhesive forces between S. epidermidis and fibronectin-coated surfaces using optical tweezers.
    Simpson KH; Bowden MG; Höök M; Anvari B
    Lasers Surg Med; 2002; 31(1):45-52. PubMed ID: 12124715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An optically driven pump for microfluidics.
    Leach J; Mushfique H; di Leonardo R; Padgett M; Cooper J
    Lab Chip; 2006 Jun; 6(6):735-9. PubMed ID: 16738723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.