These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 20368686)

  • 1. Nanotube devices based crossbar architecture: toward neuromorphic computing.
    Zhao WS; Agnus G; Derycke V; Filoramo A; Bourgoin JP; Gamrat C
    Nanotechnology; 2010 Apr; 21(17):175202. PubMed ID: 20368686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of nanoscale memristor synapses in neuromorphic computing architectures.
    Indiveri G; Linares-Barranco B; Legenstein R; Deligeorgis G; Prodromakis T
    Nanotechnology; 2013 Sep; 24(38):384010. PubMed ID: 23999381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of a 3D nanoscale crossbar circuit by nanotransfer-printing lithography.
    Stuart C; Park HK; Chen Y
    Small; 2010 Aug; 6(15):1663-8. PubMed ID: 20632372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Training and operation of an integrated neuromorphic network based on metal-oxide memristors.
    Prezioso M; Merrikh-Bayat F; Hoskins BD; Adam GC; Likharev KK; Strukov DB
    Nature; 2015 May; 521(7550):61-4. PubMed ID: 25951284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuromorphic function learning with carbon nanotube based synapses.
    Gacem K; Retrouvey JM; Chabi D; Filoramo A; Zhao W; Klein JO; Derycke V
    Nanotechnology; 2013 Sep; 24(38):384013. PubMed ID: 23999538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CMOS-compatible fabrication of room-temperature single-electron devices.
    Ray V; Subramanian R; Bhadrachalam P; Ma LC; Kim CU; Koh SJ
    Nat Nanotechnol; 2008 Oct; 3(10):603-8. PubMed ID: 18838999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated three-dimensional microelectromechanical devices from processable carbon nanotube wafers.
    Hayamizu Y; Yamada T; Mizuno K; Davis RC; Futaba DN; Yumura M; Hata K
    Nat Nanotechnol; 2008 May; 3(5):289-94. PubMed ID: 18654526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications.
    Kim KH; Gaba S; Wheeler D; Cruz-Albrecht JM; Hussain T; Srinivasa N; Lu W
    Nano Lett; 2012 Jan; 12(1):389-95. PubMed ID: 22141918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuromorphic hardware databases for exploring structure-function relationships in the brain.
    Breslin C; O'Lenskie A
    Philos Trans R Soc Lond B Biol Sci; 2001 Aug; 356(1412):1249-58. PubMed ID: 11545701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates.
    Javey A; Kim H; Brink M; Wang Q; Ural A; Guo J; McIntyre P; McEuen P; Lundstrom M; Dai H
    Nat Mater; 2002 Dec; 1(4):241-6. PubMed ID: 12618786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defect-tolerant architectures for nanoelectronic crossbar memories.
    Strukov DB; Likharev KK
    J Nanosci Nanotechnol; 2007 Jan; 7(1):151-67. PubMed ID: 17455481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Memristor crossbar-based neuromorphic computing system: a case study.
    Hu M; Li H; Chen Y; Wu Q; Rose GS; Linderman RW
    IEEE Trans Neural Netw Learn Syst; 2014 Oct; 25(10):1864-78. PubMed ID: 25291739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated single-walled carbon nanotube/microfluidic devices for the study of the sensing mechanism of nanotube sensors.
    Fu Q; Liu J
    J Phys Chem B; 2005 Jul; 109(28):13406-8. PubMed ID: 16852676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Instar and outstar learning with memristive nanodevices.
    Snider G
    Nanotechnology; 2011 Jan; 22(1):015201. PubMed ID: 21135450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Writing to and reading from a nano-scale crossbar memory based on memristors.
    Vontobel PO; Robinett W; Kuekes PJ; Stewart DR; Straznicky J; Stanley Williams R
    Nanotechnology; 2009 Oct; 20(42):425204. PubMed ID: 19779237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallel weight update protocol for a carbon nanotube synaptic transistor array for accelerating neuromorphic computing.
    Kim S; Lee Y; Kim HD; Choi SJ
    Nanoscale; 2020 Jan; 12(3):2040-2046. PubMed ID: 31912838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ge/Si nanowire heterostructures as high-performance field-effect transistors.
    Xiang J; Lu W; Hu Y; Wu Y; Yan H; Lieber CM
    Nature; 2006 May; 441(7092):489-93. PubMed ID: 16724062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly aligned scalable platinum-decorated single-wall carbon nanotube arrays for nanoscale electrical interconnects.
    Kim YL; Li B; An X; Hahm MG; Chen L; Washington M; Ajayan PM; Nayak SK; Busnaina A; Kar S; Jung YJ
    ACS Nano; 2009 Sep; 3(9):2818-26. PubMed ID: 19725514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel electrical switching behaviour and logic in carbon nanotube Y-junctions.
    Bandaru PR; Daraio C; Jin S; Rao AM
    Nat Mater; 2005 Sep; 4(9):663-6. PubMed ID: 16100516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic memristive devices for computing and neuromorphic applications.
    Gaba S; Sheridan P; Zhou J; Choi S; Lu W
    Nanoscale; 2013 Jul; 5(13):5872-8. PubMed ID: 23698627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.