These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 20369001)

  • 1. The refinement of ipsilateral eye retinotopic maps is increased by removing the dominant contralateral eye in adult mice.
    Smith SL; Trachtenberg JT
    PLoS One; 2010 Mar; 5(3):e9925. PubMed ID: 20369001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ipsilateral eye cortical maps are uniquely sensitive to binocular plasticity.
    Faguet J; Maranhao B; Smith SL; Trachtenberg JT
    J Neurophysiol; 2009 Feb; 101(2):855-61. PubMed ID: 19052109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experience-dependent binocular competition in the visual cortex begins at eye opening.
    Smith SL; Trachtenberg JT
    Nat Neurosci; 2007 Mar; 10(3):370-5. PubMed ID: 17293862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A switch from inter-ocular to inter-hemispheric suppression following monocular deprivation in the rat visual cortex.
    Pietrasanta M; Restani L; Cerri C; Olcese U; Medini P; Caleo M
    Eur J Neurosci; 2014 Jul; 40(1):2283-92. PubMed ID: 24689940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of vision by monocular deprivation in adult mice.
    Prusky GT; Alam NM; Douglas RM
    J Neurosci; 2006 Nov; 26(45):11554-61. PubMed ID: 17093076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical imaging of the intrinsic signal as a measure of cortical plasticity in the mouse.
    Cang J; Kalatsky VA; Löwel S; Stryker MP
    Vis Neurosci; 2005; 22(5):685-91. PubMed ID: 16332279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina.
    Kaas JH; Krubitzer LA; Chino YM; Langston AL; Polley EH; Blair N
    Science; 1990 Apr; 248(4952):229-31. PubMed ID: 2326637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional topography and integration of the contralateral and ipsilateral retinocollicular projections of ephrin-A-/- mice.
    Haustead DJ; Lukehurst SS; Clutton GT; Bartlett CA; Dunlop SA; Arrese CA; Sherrard RM; Rodger J
    J Neurosci; 2008 Jul; 28(29):7376-86. PubMed ID: 18632942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity of Ocular Dominance Patterns in Visual Cortex Originates from Variations in Local Cortical Retinotopy.
    Najafian S; Jin J; Alonso JM
    J Neurosci; 2019 Nov; 39(46):9145-9163. PubMed ID: 31558616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responsiveness of cat area 17 after monocular inactivation: limitation of topographic plasticity in adult cortex.
    Rosa MG; Schmid LM; Calford MB
    J Physiol; 1995 Feb; 482 ( Pt 3)(Pt 3):589-608. PubMed ID: 7738850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enduring critical period plasticity visualized by transcranial flavoprotein imaging in mouse primary visual cortex.
    Tohmi M; Kitaura H; Komagata S; Kudoh M; Shibuki K
    J Neurosci; 2006 Nov; 26(45):11775-85. PubMed ID: 17093098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of early monocular deprivation on response properties and afferents of nucleus of the optic tract in the ferret.
    Sengpiel F; Klauer S; Hoffmann KP
    Exp Brain Res; 1990; 83(1):190-9. PubMed ID: 2073938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of visual experience in the formation of binocular projections in frogs.
    Udin SB
    Cell Mol Neurobiol; 1985 Jun; 5(1-2):85-102. PubMed ID: 3896495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinotopy versus face selectivity in macaque visual cortex.
    Rajimehr R; Bilenko NY; Vanduffel W; Tootell RB
    J Cogn Neurosci; 2014 Dec; 26(12):2691-700. PubMed ID: 24893745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping retinotopic structure in mouse visual cortex with optical imaging.
    Schuett S; Bonhoeffer T; Hübener M
    J Neurosci; 2002 Aug; 22(15):6549-59. PubMed ID: 12151534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Accurate establishment of the retinotopic topography of area 17 in cats by intrinsic signal optical imaging].
    Chen X; Shou TD
    Sheng Li Xue Bao; 2003 Oct; 55(5):541-6. PubMed ID: 14566401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Features of the retinotopic representation in the visual wulst of a laterally eyed bird, the zebra finch (Taeniopygia guttata).
    Michael N; Löwel S; Bischof HJ
    PLoS One; 2015; 10(4):e0124917. PubMed ID: 25853253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maps of visual space in human occipital cortex are retinotopic, not spatiotopic.
    Gardner JL; Merriam EP; Movshon JA; Heeger DJ
    J Neurosci; 2008 Apr; 28(15):3988-99. PubMed ID: 18400898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deletion of Ten-m3 induces the formation of eye dominance domains in mouse visual cortex.
    Merlin S; Horng S; Marotte LR; Sur M; Sawatari A; Leamey CA
    Cereb Cortex; 2013 Apr; 23(4):763-74. PubMed ID: 22499796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contralateral Bias of High Spatial Frequency Tuning and Cardinal Direction Selectivity in Mouse Visual Cortex.
    Salinas KJ; Figueroa Velez DX; Zeitoun JH; Kim H; Gandhi SP
    J Neurosci; 2017 Oct; 37(42):10125-10138. PubMed ID: 28924011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.