BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 20369388)

  • 1. Cholesterol depletion from the plasma membrane impairs proton and glutamate storage in synaptic vesicles of nerve terminals.
    Tarasenko AS; Sivko RV; Krisanova NV; Himmelreich NH; Borisova TA
    J Mol Neurosci; 2010 Jul; 41(3):358-67. PubMed ID: 20369388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diverse presynaptic mechanisms underlying methyl-β-cyclodextrin-mediated changes in glutamate transport.
    Borisova T; Sivko R; Borysov A; Krisanova N
    Cell Mol Neurobiol; 2010 Oct; 30(7):1013-23. PubMed ID: 20502957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptopathy under conditions of altered gravity: changes in synaptic vesicle fusion and glutamate release.
    Krisanova NV; Trikash IO; Borisova TA
    Neurochem Int; 2009 Dec; 55(8):724-31. PubMed ID: 19631248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenylarsine oxide is able to dissipate synaptic vesicle acidic pool.
    Tarasenko AS; Kostrzhevska OG; Storchak LG; Linetska MV; Borisova TA; Himmelreich NH
    Neurochem Int; 2005 Jun; 46(7):541-50. PubMed ID: 15843048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. alpha-Latrotoxin affects mitochondrial potential and synaptic vesicle proton gradient of nerve terminals.
    Tarasenko AS; Storchak LG; Himmelreich NH
    Neurochem Int; 2008 Feb; 52(3):392-400. PubMed ID: 17728017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The proton gradient of secretory granules and glutamate transport in blood platelets during cholesterol depletion of the plasma membrane by methyl-β-cyclodextrin.
    Borisova T; Kasatkina L; Ostapchenko L
    Neurochem Int; 2011 Nov; 59(6):965-75. PubMed ID: 21787821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitotoxic potential of exogenous ferritin and apoferritin: changes in ambient level of glutamate and synaptic vesicle acidification in brain nerve terminals.
    Krisanova N; Sivko R; Kasatkina L; Borуsov A; Borisova T
    Mol Cell Neurosci; 2014 Jan; 58():95-104. PubMed ID: 24321453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuroprotection by lowering cholesterol: a decrease in membrane cholesterol content reduces transporter-mediated glutamate release from brain nerve terminals.
    Krisanova N; Sivko R; Kasatkina L; Borisova T
    Biochim Biophys Acta; 2012 Oct; 1822(10):1553-61. PubMed ID: 22713486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Exocytotic steps in cell-free system after cholesterol deprivation in synaptosomal plasma membranes and synaptic vesicles].
    Humeniuk VP; Trykash IO
    Ukr Biokhim Zh (1999); 2011; 83(2):53-64. PubMed ID: 21851047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facilitatory effect of glutamate exocytosis from rat cerebrocortical nerve terminals by alpha-tocopherol, a major vitamin E component.
    Yang TT; Wang SJ
    Neurochem Int; 2008 May; 52(6):979-89. PubMed ID: 18037536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholesterol depletion attenuates tonic release but increases the ambient level of glutamate in rat brain synaptosomes.
    Borisova T; Krisanova N; Sivko R; Borysov A
    Neurochem Int; 2010 Feb; 56(3):466-78. PubMed ID: 20025918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osthole and imperatorin, the active constituents of Cnidium monnieri (L.) Cusson, facilitate glutamate release from rat hippocampal nerve terminals.
    Wang SJ; Lin TY; Lu CW; Huang WJ
    Neurochem Int; 2008 Dec; 53(6-8):416-23. PubMed ID: 18951936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholesterol as a key player in the balance of evoked and spontaneous glutamate release in rat brain cortical synaptosomes.
    Teixeira G; Vieira LB; Gomez MV; Guatimosim C
    Neurochem Int; 2012 Dec; 61(7):1151-9. PubMed ID: 22940694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuromodulatory properties of fluorescent carbon dots: effect on exocytotic release, uptake and ambient level of glutamate and GABA in brain nerve terminals.
    Borisova T; Nazarova A; Dekaliuk M; Krisanova N; Pozdnyakova N; Borysov A; Sivko R; Demchenko AP
    Int J Biochem Cell Biol; 2015 Feb; 59():203-15. PubMed ID: 25486182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Src family tyrosine kinases differentially modulate exocytosis from rat brain nerve terminals.
    Baldwin ML; Cammarota M; Sim AT; Rostas JA
    Neurochem Int; 2006 Jul; 49(1):80-6. PubMed ID: 16500731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Presynaptic malfunction: the neurotoxic effects of cadmium and lead on the proton gradient of synaptic vesicles and glutamate transport.
    Borisova T; Krisanova N; Sivko R; Kasatkina L; Borysov A; Griffin S; Wireman M
    Neurochem Int; 2011 Aug; 59(2):272-9. PubMed ID: 21672571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane cholesterol regulates different modes of synaptic vesicle release and retrieval at the frog neuromuscular junction.
    Rodrigues HA; Lima RF; Fonseca Mde C; Amaral EA; Martinelli PM; Naves LA; Gomez MV; Kushmerick C; Prado MA; Guatimosim C
    Eur J Neurosci; 2013 Oct; 38(7):2978-87. PubMed ID: 23841903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of O-methyl-β-cyclodextrin-modified magnetic nanoparticles on the uptake and extracellular level of l-glutamate in brain nerve terminals.
    Horák D; Beneš M; Procházková Z; Trchová M; Borysov A; Pastukhov A; Paliienko K; Borisova T
    Colloids Surf B Biointerfaces; 2017 Jan; 149():64-71. PubMed ID: 27721167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Methyl-beta-cyclodextrin influences glutamate transport in the rat brain nerve terminals by depletion of membrane cholesterol].
    Krysanova NV; Sivko RV; Krupko OA; Borisova TA
    Ukr Biokhim Zh (1999); 2007; 79(3):29-37. PubMed ID: 17988012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A double-labeled preparation for simultaneous measurement of [3H]-noradrenaline and [14C]-glutamic acid exocytosis from streptolysin-O (SLO)-perforated synaptosomes.
    McFadden SC; Bobich JA; Zheng Q
    J Neurosci Methods; 2001 May; 107(1-2):39-46. PubMed ID: 11389940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.