These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 20369565)

  • 1. Assessing the effects of solids residence time and volatile fatty acid augmentation on biological phosphorus removal using real wastewater.
    Horgan CJ; Coats ER; Loge FJ
    Water Environ Res; 2010 Mar; 82(3):216-26. PubMed ID: 20369565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biological phosphorus removal potential test for wastewaters.
    Park JK; Whang LM; Wang JC; Novotny G
    Water Environ Res; 2001; 73(3):374-82. PubMed ID: 11561598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of anaerobic HRT on biological phosphorus removal and the enrichment of phosphorus accumulating organisms.
    Coats ER; Watkins DL; Brinkman CK; Loge FJ
    Water Environ Res; 2011 May; 83(5):461-9. PubMed ID: 21657197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Kinetic model of enhanced biological phosphorus removal with mixed acetic and propionic acids as carbon sources. (II): Process simulation].
    Zhang C; Chen YG
    Huan Jing Ke Xue; 2013 Mar; 34(3):998-1003. PubMed ID: 23745407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of solids residence time on community structure and nutrient dynamics of mixed phototrophic wastewater treatment systems.
    Bradley IM; Sevillano-Rivera MC; Pinto AJ; Guest JS
    Water Res; 2019 Mar; 150():271-282. PubMed ID: 30529592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved biological phosphorus removal performance driven by the aerobic/extended-idle regime with propionate as the sole carbon source.
    Wang D; Li X; Yang Q; Zheng W; Wu Y; Zeng T; Zeng G
    Water Res; 2012 Aug; 46(12):3868-78. PubMed ID: 22609408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of phosphorus removal and anaerobic selector performance in a full-scale activated sludge process in Singapore.
    Cao YS; Ang CM; Raajeevan KS; Kiran AK; Lai KC; Ng SW; Zulkifli I; Wah YL
    Water Sci Technol; 2006; 54(8):237-46. PubMed ID: 17163033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Volatile fatty acids production from sewage organic matter by combined bioflocculation and anaerobic fermentation.
    Khiewwijit R; Keesman KJ; Rijnaarts H; Temmink H
    Bioresour Technol; 2015 Oct; 193():150-5. PubMed ID: 26133471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery of polyhydroxyalkanoate from activated sludge in an enhanced biological phosphorus removal bench-scale reactor.
    Perez-Feito R; Noguera DR
    Water Environ Res; 2006 Jul; 78(7):770-5. PubMed ID: 16929649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling biosolids phosphorus content in enhanced biological phosphorus removal reactors.
    Chaparro SK; Noguera DR
    Water Environ Res; 2003; 75(3):254-62. PubMed ID: 12837032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge.
    Cassidy DP; Belia E
    Water Res; 2005 Nov; 39(19):4817-23. PubMed ID: 16278003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low temperature biological phosphorus removal and partial nitrification in a pilot sequencing batch reactor system.
    Yuan Q; Oleszkiewicz JA
    Water Sci Technol; 2011; 63(12):2802-7. PubMed ID: 22049702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological nutrient and organic removal from meat packing wastewater with a unique sequence of suspended growth and fixed-film reactors.
    Lim SJ; Kim SH; Fox P
    Water Sci Technol; 2009; 60(12):3189-97. PubMed ID: 19955643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Kinetic model of enhanced biological phosphorus removal with mixed acetic and propionic acids as carbon sources. (I): Model constitution].
    Zhang C; Chen YG
    Huan Jing Ke Xue; 2013 Mar; 34(3):993-7. PubMed ID: 23745406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and model assisted investigation of an operational strategy for the BPR under low influent concentrations.
    Krühne U; Henze M; Larose A; Kolte-Olsen A; Bay Jørgensen S
    Water Res; 2003 Apr; 37(8):1953-71. PubMed ID: 12697239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BICT biological process for nitrogen and phosphorus removal.
    Huang Y; Li Y; Pan Y
    Water Sci Technol; 2004; 50(6):179-88. PubMed ID: 15537006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-anoxic denitrification driven by PHA and glycogen within enhanced biological phosphorus removal.
    Coats ER; Mockos A; Loge FJ
    Bioresour Technol; 2011 Jan; 102(2):1019-27. PubMed ID: 20970328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of solids retention time on nitrogen and phosphorus removal from municipal wastewater in a sequencing batch membrane bioreactor.
    Belli TJ; Bernardelli JK; da Costa RE; Bassin JP; Amaral MC; Lapolli FR
    Environ Technol; 2017 Apr; 38(7):806-815. PubMed ID: 27408986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermentation and elutriation of primary sludge: effect of SRT on process performance.
    Bouzas A; Ribes J; Ferrer J; Seco A
    Water Res; 2007 Feb; 41(4):747-56. PubMed ID: 17224171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.