These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 20369966)

  • 21. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states.
    Ku WL; Girvan M; Ott E
    Chaos; 2015 Dec; 25(12):123122. PubMed ID: 26723161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The frustrated and compositional nature of chaos in small Hopfield networks.
    Bersini H
    Neural Netw; 1998 Aug; 11(6):1017-1025. PubMed ID: 12662771
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hyperbolic chaotic attractor in amplitude dynamics of coupled self-oscillators with periodic parameter modulation.
    Isaeva OB; Kuznetsov SP; Mosekilde E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016228. PubMed ID: 21867294
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calculation of Hamilton energy and control of dynamical systems with different types of attractors.
    Ma J; Wu F; Jin W; Zhou P; Hayat T
    Chaos; 2017 May; 27(5):053108. PubMed ID: 28576108
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantifying spatiotemporal chaos in Rayleigh-Bénard convection.
    Karimi A; Paul MR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046201. PubMed ID: 22680550
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new method for generating chaotic system with arbitrary shaped distributed attractors.
    Su Q; Wang C; Chen H; Sun J; Zhang X
    Chaos; 2018 Jul; 28(7):073106. PubMed ID: 30070490
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unexpected robustness against noise of a class of nonhyperbolic chaotic attractors.
    Kantz H; Grebogi C; Prasad A; Lai YC; Sinde E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026209. PubMed ID: 11863634
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chaos and dynamical complexity in the quantum to classical transition.
    Pokharel B; Misplon MZR; Lynn W; Duggins P; Hallman K; Anderson D; Kapulkin A; Pattanayak AK
    Sci Rep; 2018 Feb; 8(1):2108. PubMed ID: 29391499
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Escaping from nonhyperbolic chaotic attractors.
    Kraut S; Grebogi C
    Phys Rev Lett; 2004 Jun; 92(23):234101. PubMed ID: 15245159
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exact invariant measures: How the strength of measure settles the intensity of chaos.
    Venegeroles R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062914. PubMed ID: 26172779
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Symmetry-increasing bifurcation as a predictor of a chaos-hyperchaos transition in coupled systems.
    Yanchuk S; Kapitaniak T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056235. PubMed ID: 11736082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiple period-doubling bifurcation route to chaos in periodically pulsed Murali-Lakshmanan-Chua circuit-controlling and synchronization of chaos.
    Parthasarathy S; Manikandakumar K
    Chaos; 2007 Dec; 17(4):043120. PubMed ID: 18163784
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Periodicity, chaos, and multiple attractors in a memristor-based Shinriki's circuit.
    Kengne J; Njitacke Tabekoueng Z; Kamdoum Tamba V; Nguomkam Negou A
    Chaos; 2015 Oct; 25(10):103126. PubMed ID: 26520092
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Doubly transient chaos: generic form of chaos in autonomous dissipative systems.
    Motter AE; Gruiz M; Károlyi G; Tél T
    Phys Rev Lett; 2013 Nov; 111(19):194101. PubMed ID: 24266475
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Is there chaos in the brain? II. Experimental evidence and related models.
    Korn H; Faure P
    C R Biol; 2003 Sep; 326(9):787-840. PubMed ID: 14694754
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chaos and multi-scroll attractors in RCL-shunted junction coupled Jerk circuit connected by memristor.
    Ma J; Zhou P; Ahmad B; Ren G; Wang C
    PLoS One; 2018; 13(1):e0191120. PubMed ID: 29342178
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strange attractors in discrete slow power-law models of bone remodeling.
    Jerez S; Pliego E; Solis FJ
    Chaos; 2021 Mar; 31(3):033109. PubMed ID: 33810734
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strong-chaos-caused negative mobility in a periodic substrate potential.
    Luo Y; Zeng C; Ai BQ
    Phys Rev E; 2020 Oct; 102(4-1):042114. PubMed ID: 33212680
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Poincaré recurrences from the perspective of transient chaos.
    Altmann EG; Tél T
    Phys Rev Lett; 2008 May; 100(17):174101. PubMed ID: 18518290
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Violation of hyperbolicity in a diffusive medium with local hyperbolic attractor.
    Kuptsov PV; Kuznetsov SP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):016205. PubMed ID: 19658790
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.