These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 20370025)

  • 1. Distortion product emissions from a cochlear model with nonlinear mechanoelectrical transduction in outer hair cells.
    Liu YW; Neely ST
    J Acoust Soc Am; 2010 Apr; 127(4):2420-32. PubMed ID: 20370025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response to a pure tone in a nonlinear mechanical-electrical-acoustical model of the cochlea.
    Meaud J; Grosh K
    Biophys J; 2012 Mar; 102(6):1237-46. PubMed ID: 22455906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression tuning of distortion-product otoacoustic emissions: results from cochlear mechanics simulation.
    Liu YW; Neely ST
    J Acoust Soc Am; 2013 Feb; 133(2):951-61. PubMed ID: 23363112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distortion product otoacoustic emissions in an active nonlinear model of the cochlea.
    Fukazawa T; Tanaka Y
    Hear Res; 1994 Dec; 81(1-2):42-8. PubMed ID: 7737928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cochlear compression: effects of low-frequency biasing on quadratic distortion product otoacoustic emission.
    Bian L
    J Acoust Soc Am; 2004 Dec; 116(6):3559-71. PubMed ID: 15658707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-tip auditory-nerve responses that are suppressed by low-frequency bias tones originate from reticular lamina motion.
    Nam H; Guinan JJ
    Hear Res; 2018 Feb; 358():1-9. PubMed ID: 29276975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model of cochlear micromechanics.
    Fukazawa T
    Hear Res; 1997 Nov; 113(1-2):182-90. PubMed ID: 9387997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing the optimal signal conditions for recording cubic and quadratic distortion product otoacoustic emissions.
    Bian L; Chen S
    J Acoust Soc Am; 2008 Dec; 124(6):3739-50. PubMed ID: 19206801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrically evoked cubic distortion product otoacoustic emissions from gerbil cochlea.
    Ren T; Nuttall AL; Miller JM
    Hear Res; 1996 Dec; 102(1-2):43-50. PubMed ID: 8951449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission.
    Verhulst S; Dau T; Shera CA
    J Acoust Soc Am; 2012 Dec; 132(6):3842-8. PubMed ID: 23231114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromotile hearing: evidence from basilar membrane motion and otoacoustic emissions.
    Nuttall AL; Ren T
    Hear Res; 1995 Dec; 92(1-2):170-7. PubMed ID: 8647740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic enhancement of electrically evoked otoacoustic emissions reflects basilar membrane tuning: a model.
    Xue S; Mountain DC; Hubbard AE
    Hear Res; 1995 Nov; 91(1-2):93-100. PubMed ID: 8647730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interplay between active hair bundle motility and electromotility in the cochlea.
    O Maoiléidigh D; Jülicher F
    J Acoust Soc Am; 2010 Sep; 128(3):1175-90. PubMed ID: 20815454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cochlear transducer operating point adaptation.
    Zou Y; Zheng J; Ren T; Nuttall A
    J Acoust Soc Am; 2006 Apr; 119(4):2232-41. PubMed ID: 16642838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiopathological significance of distortion-product otoacoustic emissions at 2f1-f2 produced by high- versus low-level stimuli.
    Avan P; Bonfils P; Gilain L; Mom T
    J Acoust Soc Am; 2003 Jan; 113(1):430-41. PubMed ID: 12558280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Outer hair cell active force generation in the cochlear environment.
    Liao Z; Feng S; Popel AS; Brownell WE; Spector AA
    J Acoust Soc Am; 2007 Oct; 122(4):2215-25. PubMed ID: 17902857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reticular lamina and basilar membrane vibrations in living mouse cochleae.
    Ren T; He W; Kemp D
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9910-5. PubMed ID: 27516544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation place of the long- and short-latency components of transient-evoked otoacoustic emissions in a nonlinear cochlear model.
    Moleti A; Al-Maamury AM; Bertaccini D; Botti T; Sisto R
    J Acoust Soc Am; 2013 Jun; 133(6):4098-108. PubMed ID: 23742362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A second, low-frequency mode of vibration in the intact mammalian cochlea.
    Lukashkin AN; Russell IJ
    J Acoust Soc Am; 2003 Mar; 113(3):1544-50. PubMed ID: 12656389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How are inner hair cells stimulated? Evidence for multiple mechanical drives.
    Guinan JJ
    Hear Res; 2012 Oct; 292(1-2):35-50. PubMed ID: 22959529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.