These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: methodology and in vitro experiments. Zhong P; Zhou Y J Acoust Soc Am; 2001 Dec; 110(6):3283-91. PubMed ID: 11785829 [TBL] [Abstract][Full Text] [Related]
4. Reduction of bubble cavitation by modifying the diffraction wave from a lithotripter aperture. Zhou Y J Endourol; 2012 Aug; 26(8):1075-84. PubMed ID: 22332839 [TBL] [Abstract][Full Text] [Related]
5. Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: refinement of reflector geometry. Zhou Y; Zhong P J Acoust Soc Am; 2003 Jan; 113(1):586-97. PubMed ID: 12558294 [TBL] [Abstract][Full Text] [Related]
6. Shifting the Split Reflectors to Enhance Stone Fragmentation of Shock Wave Lithotripsy. Wang JC; Zhou Y Ultrasound Med Biol; 2016 Aug; 42(8):1876-89. PubMed ID: 27166016 [TBL] [Abstract][Full Text] [Related]
7. The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy. Zhou Y; Cocks FH; Preminger GM; Zhong P J Urol; 2004 Jul; 172(1):349-54. PubMed ID: 15201809 [TBL] [Abstract][Full Text] [Related]
8. Improving the lens design and performance of a contemporary electromagnetic shock wave lithotripter. Neisius A; Smith NB; Sankin G; Kuntz NJ; Madden JF; Fovargue DE; Mitran S; Lipkin ME; Simmons WN; Preminger GM; Zhong P Proc Natl Acad Sci U S A; 2014 Apr; 111(13):E1167-75. PubMed ID: 24639497 [TBL] [Abstract][Full Text] [Related]
9. Size and location of defects at the coupling interface affect lithotripter performance. Li G; Williams JC; Pishchalnikov YA; Liu Z; McAteer JA BJU Int; 2012 Dec; 110(11 Pt C):E871-7. PubMed ID: 22938566 [TBL] [Abstract][Full Text] [Related]
10. A heuristic model of stone comminution in shock wave lithotripsy. Smith NB; Zhong P J Acoust Soc Am; 2013 Aug; 134(2):1548-58. PubMed ID: 23927195 [TBL] [Abstract][Full Text] [Related]
11. Stone comminution correlates with the average peak pressure incident on a stone during shock wave lithotripsy. Smith N; Zhong P J Biomech; 2012 Oct; 45(15):2520-5. PubMed ID: 22935690 [TBL] [Abstract][Full Text] [Related]
12. Reduction of tissue injury in shock-wave lithotripsy by using an acoustic diode. Zhu S; Dreyer T; Liebler M; Riedlinger R; Preminger GM; Zhong P Ultrasound Med Biol; 2004 May; 30(5):675-82. PubMed ID: 15183234 [TBL] [Abstract][Full Text] [Related]
14. Turbulent water coupling in shock wave lithotripsy. Lautz J; Sankin G; Zhong P Phys Med Biol; 2013 Feb; 58(3):735-48. PubMed ID: 23322027 [TBL] [Abstract][Full Text] [Related]
15. The effect of reflector geometry on the acoustic field and bubble dynamics produced by an electrohydraulic shock wave lithotripter. Zhou Y; Zhong P J Acoust Soc Am; 2006 Jun; 119(6):3625-36. PubMed ID: 16838506 [TBL] [Abstract][Full Text] [Related]
16. Controlled cavitation to augment SWL stone comminution: mechanistic insights in vitro. Duryea AP; Roberts WW; Cain CA; Hall TL IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Feb; 60(2):301-9. PubMed ID: 23357904 [TBL] [Abstract][Full Text] [Related]
17. Assessment of a modified acoustic lens for electromagnetic shock wave lithotripters in a swine model. Mancini JG; Neisius A; Smith N; Sankin G; Astroza GM; Lipkin ME; Simmons WN; Preminger GM; Zhong P J Urol; 2013 Sep; 190(3):1096-101. PubMed ID: 23485509 [TBL] [Abstract][Full Text] [Related]
18. Pressure waveforms generated by a Dornier extra-corporeal shock-wave lithotripter. Coleman AJ; Saunders JE; Preston RC; Bacon DR Ultrasound Med Biol; 1987 Oct; 13(10):651-7. PubMed ID: 3686729 [TBL] [Abstract][Full Text] [Related]
19. Improvement of stone fragmentation during shock-wave lithotripsy using a combined EH/PEAA shock-wave generator-in vitro experiments. Xi X; Zhong P Ultrasound Med Biol; 2000 Mar; 26(3):457-67. PubMed ID: 10773377 [TBL] [Abstract][Full Text] [Related]
20. Comparison of electrohydraulic lithotripters with rigid and pressure-release ellipsoidal reflectors. I. Acoustic fields. Bailey MR; Blackstock DT; Cleveland RO; Crum LA J Acoust Soc Am; 1998 Oct; 104(4):2517-24. PubMed ID: 10491712 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]