These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 20370150)

  • 1. Globular structure of a human immunodeficiency virus-1 protease (1DIFA dimer) in an effective solvent medium by a Monte Carlo simulation.
    Pandey RB; Farmer BL
    J Chem Phys; 2010 Mar; 132(12):125101. PubMed ID: 20370150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Residue energy and mobility in sequence to global structure and dynamics of a HIV-1 protease (1DIFA) by a coarse-grained Monte Carlo simulation.
    Pandey RB; Farmer BL
    J Chem Phys; 2009 Jan; 130(4):044906. PubMed ID: 19191412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer modelling of the alpha-helical coiled coil: packing of side-chains in the inner core.
    Offer G; Sessions R
    J Mol Biol; 1995 Jun; 249(5):967-87. PubMed ID: 7791220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformation of a coarse-grained protein chain (an aspartic acid protease) model in effective solvent by a bond-fluctuating Monte Carlo simulation.
    Pandey RB; Farmer BL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031902. PubMed ID: 18517417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-arrhenius behavior in the unfolding of a short, hydrophobic alpha-helix. Complementarity of molecular dynamics and lattice model simulations.
    Collet O; Chipot C
    J Am Chem Soc; 2003 May; 125(21):6573-80. PubMed ID: 12785798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Packing and hydrophobicity effects on protein folding and stability: effects of beta-branched amino acids, valine and isoleucine, on the formation and stability of two-stranded alpha-helical coiled coils/leucine zippers.
    Zhu BY; Zhou NE; Kay CM; Hodges RS
    Protein Sci; 1993 Mar; 2(3):383-94. PubMed ID: 8453376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Helix-forming tendencies of nonpolar amino acids predicted by Monte Carlo simulated annealing.
    Okamoto Y
    Proteins; 1994 May; 19(1):14-23. PubMed ID: 8066082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of peptides (A3, Flg, Pd2, Pd4) on gold and palladium surfaces by a coarse-grained Monte Carlo simulation.
    Pandey RB; Heinz H; Feng J; Farmer BL; Slocik JM; Drummy LF; Naik RR
    Phys Chem Chem Phys; 2009 Mar; 11(12):1989-2001. PubMed ID: 19280010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relaxation to native conformation of a bond-fluctuating protein chain with hydrophobic and polar nodes.
    Bjursell J; Pandey RB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 1):052904. PubMed ID: 15600673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformation of tetragastrin in DMSO. Monte Carlo simulation taking account of solvent effects.
    Kuroda M; Yamazaki K; Taga T
    Int J Pept Protein Res; 1994 Nov; 44(5):499-506. PubMed ID: 7896510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme.
    Kolinski A; Skolnick J
    Proteins; 1994 Apr; 18(4):338-52. PubMed ID: 8208726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A refined model of the thyrotropin-releasing hormone (TRH) receptor binding pocket. Novel mixed mode Monte Carlo/stochastic dynamics simulations of the complex between TRH and TRH receptor.
    Laakkonen LJ; Guarnieri F; Perlman JH; Gershengorn MC; Osman R
    Biochemistry; 1996 Jun; 35(24):7651-63. PubMed ID: 8672466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors governing the foldability of proteins.
    Klimov DK; Thirumalai D
    Proteins; 1996 Dec; 26(4):411-41. PubMed ID: 8990496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extremely fast folding of a very stable leucine zipper with a strengthened hydrophobic core and lacking electrostatic interactions between helices.
    Dürr E; Jelesarov I; Bosshard HR
    Biochemistry; 1999 Jan; 38(3):870-80. PubMed ID: 9893981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymer collapse, protein folding, and the percolation threshold.
    Meirovitch H
    J Comput Chem; 2002 Jan; 23(1):166-71. PubMed ID: 11913383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-organization in protein folding and the hydrophobic interaction.
    Gerstman BS; Chapagain PP
    J Chem Phys; 2005 Aug; 123(5):054901. PubMed ID: 16108687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulations of beta-hairpin folding at constant temperature.
    Sung SS
    Biophys J; 1999 Jan; 76(1 Pt 1):164-75. PubMed ID: 9876131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational response to solvent interaction and temperature of a protein (Histone h3.1) by a multi-grained monte carlo simulation.
    Pandey RB; Farmer BL
    PLoS One; 2013; 8(10):e76069. PubMed ID: 24204592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The loop problem in proteins: a Monte Carlo simulated annealing approach.
    Carlacci L; Englander SW
    Biopolymers; 1993 Aug; 33(8):1271-86. PubMed ID: 7689864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.