These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 20370177)

  • 1. Observation of runaway electron beams by visible color camera in the Experimental Advanced Superconducting Tokamak.
    Shi Y; Fu J; Li J; Yang Y; Wang F; Li Y; Zhang W; Wan B; Chen Z
    Rev Sci Instrum; 2010 Mar; 81(3):033506. PubMed ID: 20370177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of runaway electrons by infrared camera in J-TEXT.
    Tong RH; Chen ZY; Zhang M; Huang DW; Yan W; Zhuang G
    Rev Sci Instrum; 2016 Nov; 87(11):11E113. PubMed ID: 27910692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Runaway electron energy measurement using hard x-ray spectroscopy in "Damavand" tokamak.
    Rasouli C; Iraji D; Farahbod AH; Akhtari K; Rasouli H; Modarresi H; Lamehi M
    Rev Sci Instrum; 2009 Jan; 80(1):013503. PubMed ID: 19191433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Note: measurement of the runaway electrons in the J-TEXT tokamak.
    Chen ZY; Zhang Y; Zhang XQ; Luo YH; Jin W; Li JC; Chen ZP; Wang ZJ; Yang ZJ; Zhuang G
    Rev Sci Instrum; 2012 May; 83(5):056108. PubMed ID: 22667672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of Cherenkov-type detectors for measurements of runaway electrons in the ISTTOK tokamak.
    Plyusnin VV; Jakubowski L; Zebrowski J; Fernandes H; Silva C; Malinowski K; Duarte P; Rabinski M; Sadowski MJ
    Rev Sci Instrum; 2008 Oct; 79(10):10F505. PubMed ID: 19044650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental observation of increased threshold electric field for runaway generation due to synchrotron radiation losses in the FTU Tokamak.
    Martín-Solís JR; Sánchez R; Esposito B
    Phys Rev Lett; 2010 Oct; 105(18):185002. PubMed ID: 21231111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hard X-ray spatial array diagnostics on Joint Texas Experimental Tokamak.
    Huang DW; Chen ZY; Luo YH; Tong RH; Yan W; Jin W; Zhuang G
    Rev Sci Instrum; 2014 Nov; 85(11):11D845. PubMed ID: 25430258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of high-speed and wide-angle visible observation diagnostics on Experimental Advanced Superconducting Tokamak using catadioptric optics.
    Yang JH; Yang XF; Hu LQ; Zang Q; Han XF; Shao CQ; Sun TF; Chen H; Wang TF; Li FJ; Hu AL
    Rev Sci Instrum; 2013 Aug; 84(8):085102. PubMed ID: 24007102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Installation of a fast framing visible camera on KSTAR.
    Chung J; Lee DK; Seo D; Choi MC
    Rev Sci Instrum; 2008 Oct; 79(10):10F510. PubMed ID: 19044655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new perspective on synchrotron radiation applications: Runaway electrons studies using a hard x-ray detection in tokamaks.
    Ghanbari K; Salar Elahi A; Ghoranneviss M
    J Xray Sci Technol; 2017; 25(1):15-23. PubMed ID: 27662276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy distribution of lost high-energy runaway electrons based on their bremsstrahlung emission in the EAST tokamak.
    Zhou RJ
    Phys Rev E; 2023 Apr; 107(4-2):045204. PubMed ID: 37198789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral measurements of runaway electrons by a scanning probe in the TEXTOR tokamak.
    Kudyakov T; Finken KH; Jakubowski M; Lehnen M; Xu Y; Willi O
    Rev Sci Instrum; 2008 Oct; 79(10):10F126. PubMed ID: 19044610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Runaway positrons in fusion plasmas.
    Fülöp T; Papp G
    Phys Rev Lett; 2012 Jun; 108(22):225003. PubMed ID: 23003607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scale size of magnetic turbulence in tokamaks probed with 30-MeV electrons.
    Entrop I; Lopes Cardozo NJ ; Jaspers R; Finken KH
    Phys Rev Lett; 2000 Apr; 84(16):3606-9. PubMed ID: 11019157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new absolute extreme ultraviolet image system designed for studying the radiated power of the Joint Texas Experimental Tokamak discharges.
    Zhang J; Zhuang G; Wang ZJ; Ding YH; Zhang XQ; Tang YJ
    Rev Sci Instrum; 2010 Jul; 81(7):073509. PubMed ID: 20687724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Poloidal beta and internal inductance measurement on HT-7 superconducting tokamak.
    Shen B; Sun YW; Wan BN; Qian JP
    Rev Sci Instrum; 2007 Sep; 78(9):093501. PubMed ID: 17902948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Runaway electrons and their interaction with tungsten wall: a comprehensive study of effects.
    Ataeiseresht L; Abdi MR; Pourshahab B; Rasouli C
    Sci Rep; 2023 Dec; 13(1):21760. PubMed ID: 38066056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progress of the ITER equatorial vis/IR wide angle viewing system optical design.
    Davi M; Corre Y; Guilhem D; Jullien F; Reichle R; Salasca S; Travère JM; de la Cal E; Manzanares A; de Pablos JL; Migozzi JB
    Rev Sci Instrum; 2008 Oct; 79(10):10F509. PubMed ID: 19044654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a diagnostic technique based on Cherenkov effect for measurements of fast electrons in fusion devices.
    Plyusnin VV; Jakubowski L; Zebrowski J; Duarte P; Malinowski K; Fernandes H; Silva C; Rabinski M; Sadowski MJ
    Rev Sci Instrum; 2012 Aug; 83(8):083505. PubMed ID: 22938292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cherenkov neutron detector for fusion reaction and runaway electron diagnostics.
    Cheon M; Kim J
    Rev Sci Instrum; 2015 Aug; 86(8):083509. PubMed ID: 26329194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.