These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 20370230)

  • 1. Note: Low density and long plasma channels generated by laser transversely ignited ablative capillary discharges.
    Liu M; Deng A; Liu J; Li R; Xu J; Xia C; Wang C; Shen B; Xu Z; Nakajima K
    Rev Sci Instrum; 2010 Mar; 81(3):036107. PubMed ID: 20370230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wakefield generation and GeV acceleration in tapered plasma channels.
    Sprangle P; Hafizi B; Peñano JR; Hubbard RF; Ting A; Moore CI; Gordon DF; Zigler A; Kaganovich D; Antonsen TM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056405. PubMed ID: 11415017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high voltage pulsed power supply for capillary discharge waveguide applications.
    Abuazoum S; Wiggins SM; Issac RC; Welsh GH; Vieux G; Ganciu M; Jaroszynski DA
    Rev Sci Instrum; 2011 Jun; 82(6):063505. PubMed ID: 21721689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Note: femtosecond laser micromachining of straight and linearly tapered capillary discharge waveguides.
    Wiggins SM; Reijnders MP; Abuazoum S; Hart K; Welsh GH; Issac RC; Jones DR; Jaroszynski DA
    Rev Sci Instrum; 2011 Sep; 82(9):096104. PubMed ID: 21974631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Note: Characterization of the plasma parameters of a capillary discharge-produced plasma channel waveguide to guide an intense laser pulse.
    Higashiguchi T; Hikida M; Terauchi H; Bai JX; Kikuchi T; Tao Y; Yugami N
    Rev Sci Instrum; 2010 Apr; 81(4):046109. PubMed ID: 20441382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct measurement of the matched spot size in a slow capillary discharge optical waveguide.
    Antsiferov PS; Akdim MR; van Dam HT
    Rev Sci Instrum; 2007 Dec; 78(12):123107. PubMed ID: 18163720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding.
    Geddes CG; Toth CS; Van Tilborg J; Esarey E; Schroeder CB; Bruhwiler D; Nieter C; Cary J; Leemans WP
    Nature; 2004 Sep; 431(7008):538-41. PubMed ID: 15457252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a density-tapered capillary gas cell for laser wakefield acceleration.
    Kim J; Phung VLJ; Roh K; Kim M; Kang K; Suk H
    Rev Sci Instrum; 2021 Feb; 92(2):023511. PubMed ID: 33648054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Study on spectral characteristics of third-order harmonic emission of plasma channels in atmosphere].
    Li HN; Zhang LP; Wu H; Li X; Ding LE
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1201-4. PubMed ID: 18800687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propagation of short intense laser pulses in gas-filled capillaries.
    Andreev NE; Nishida Y; Yugami N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056407. PubMed ID: 12059715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation and design of stable channel-guided laser wakefield accelerators.
    Hubbard RF; Kaganovich D; Hafizi B; Moore CI; Sprangle P; Ting A; Zigler A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036502. PubMed ID: 11308780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasma-assisted ignition and deflagration-to-detonation transition.
    Starikovskiy A; Aleksandrov N; Rakitin A
    Philos Trans A Math Phys Eng Sci; 2012 Feb; 370(1960):740-73. PubMed ID: 22213667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observations in collinear femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy.
    Scaffidi J; Pearman W; Carter JC; Angel SM
    Appl Spectrosc; 2006 Jan; 60(1):65-71. PubMed ID: 16454914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses.
    Faure J; Rechatin C; Norlin A; Lifschitz A; Glinec Y; Malka V
    Nature; 2006 Dec; 444(7120):737-9. PubMed ID: 17151663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low density, non-ablative fractional CO2 laser rejuvenation.
    Christiansen K; Bjerring P
    Lasers Surg Med; 2008 Sep; 40(7):454-60. PubMed ID: 18727019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser nano- and micro-structuring of silicon using a laser-induced plasma for beam conditioning.
    Marino S; Palanco S; Gabás M; Romero R; Ramos-Barrado JR
    Nanotechnology; 2015 Feb; 26(5):055303. PubMed ID: 25581137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multicentimeter long high density magnetic plasmas for optical guiding.
    Pollock BB; Froula DH; Tynan GR; Divol L; Price D; Costa R; Yepiz F; Fulkerson S; Mangini F; Glenzer SH
    Rev Sci Instrum; 2008 Oct; 79(10):10F550. PubMed ID: 19044692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser-guided energetic discharges over large air gaps by electric-field enhanced plasma filaments.
    Théberge F; Daigle JF; Kieffer JC; Vidal F; Châteauneuf M
    Sci Rep; 2017 Jan; 7():40063. PubMed ID: 28053312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatially localized self-injection of electrons in a self-modulated laser-wakefield accelerator by using a laser-induced transient density ramp.
    Chien TY; Chang CL; Lee CH; Lin JY; Wang J; Chen SY
    Phys Rev Lett; 2005 Mar; 94(11):115003. PubMed ID: 15903867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast ion generation in the cathode plasma jet of a multipicosecond laser-triggered vacuum discharge.
    Moorti A; Naik PA; Gupta PD
    Rev Sci Instrum; 2010 Mar; 81(3):033504. PubMed ID: 20370175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.