These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 20370238)
1. Hydrostatic pressure stimulation of human mesenchymal stem cells seeded on collagen-based artificial extracellular matrices. Hess R; Douglas T; Myers KA; Rentsch B; Rentsch C; Worch H; Shrive NG; Hart DA; Scharnweber D J Biomech Eng; 2010 Feb; 132(2):021001. PubMed ID: 20370238 [TBL] [Abstract][Full Text] [Related]
2. Interactive effects of mechanical stretching and extracellular matrix proteins on initiating osteogenic differentiation of human mesenchymal stem cells. Huang CH; Chen MH; Young TH; Jeng JH; Chen YJ J Cell Biochem; 2009 Dec; 108(6):1263-73. PubMed ID: 19795386 [TBL] [Abstract][Full Text] [Related]
3. Mesenchymal stem cell-seeded collagen matrices for bone repair: effects of cyclic tensile strain, cell density, and media conditions on matrix contraction in vitro. Sumanasinghe RD; Osborne JA; Loboa EG J Biomed Mater Res A; 2009 Mar; 88(3):778-86. PubMed ID: 18357565 [TBL] [Abstract][Full Text] [Related]
4. The influence of proepicardial cells on the osteogenic potential of marrow stromal cells in a three-dimensional tubular scaffold. Valarmathi MT; Yost MJ; Goodwin RL; Potts JD Biomaterials; 2008 May; 29(14):2203-16. PubMed ID: 18289664 [TBL] [Abstract][Full Text] [Related]
5. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Li WJ; Tuli R; Huang X; Laquerriere P; Tuan RS Biomaterials; 2005 Sep; 26(25):5158-66. PubMed ID: 15792543 [TBL] [Abstract][Full Text] [Related]
6. Effects of extracellular matrix on differentiation of human bone marrow-derived mesenchymal stem cells into smooth muscle cell lineage: utility for cardiovascular tissue engineering. Suzuki S; Narita Y; Yamawaki A; Murase Y; Satake M; Mutsuga M; Okamoto H; Kagami H; Ueda M; Ueda Y Cells Tissues Organs; 2010; 191(4):269-80. PubMed ID: 19940434 [TBL] [Abstract][Full Text] [Related]
7. Human mesenchymal stem cells tissue development in 3D PET matrices. Grayson WL; Ma T; Bunnell B Biotechnol Prog; 2004; 20(3):905-12. PubMed ID: 15176898 [TBL] [Abstract][Full Text] [Related]
8. Effects of titanium surface roughness on mesenchymal stem cell commitment and differentiation signaling. Balloni S; Calvi EM; Damiani F; Bistoni G; Calvitti M; Locci P; Becchetti E; Marinucci L Int J Oral Maxillofac Implants; 2009; 24(4):627-35. PubMed ID: 19885402 [TBL] [Abstract][Full Text] [Related]
9. Self-assembled composite matrix in a hierarchical 3-D scaffold for bone tissue engineering. Chen M; Le DQ; Baatrup A; Nygaard JV; Hein S; Bjerre L; Kassem M; Zou X; Bünger C Acta Biomater; 2011 May; 7(5):2244-55. PubMed ID: 21195810 [TBL] [Abstract][Full Text] [Related]
10. Increased levels of xylosyltransferase I correlate with the mineralization of the extracellular matrix during osteogenic differentiation of mesenchymal stem cells. Müller B; Prante C; Gastens M; Kuhn J; Kleesiek K; Götting C Matrix Biol; 2008 Mar; 27(2):139-49. PubMed ID: 17980567 [TBL] [Abstract][Full Text] [Related]
11. Regulation of human skeletal stem cells differentiation by Dlk1/Pref-1. Abdallah BM; Jensen CH; Gutierrez G; Leslie RG; Jensen TG; Kassem M J Bone Miner Res; 2004 May; 19(5):841-52. PubMed ID: 15068508 [TBL] [Abstract][Full Text] [Related]
12. In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen-hydroxyapatite layered scaffolds. Zhou J; Xu C; Wu G; Cao X; Zhang L; Zhai Z; Zheng Z; Chen X; Wang Y Acta Biomater; 2011 Nov; 7(11):3999-4006. PubMed ID: 21757035 [TBL] [Abstract][Full Text] [Related]
13. Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering--response to osteogenic regulators. Binulal NS; Deepthy M; Selvamurugan N; Shalumon KT; Suja S; Mony U; Jayakumar R; Nair SV Tissue Eng Part A; 2010 Feb; 16(2):393-404. PubMed ID: 19772455 [TBL] [Abstract][Full Text] [Related]
14. Non-mulberry silk gland fibroin protein 3-D scaffold for enhanced differentiation of human mesenchymal stem cells into osteocytes. Mandal BB; Kundu SC Acta Biomater; 2009 Sep; 5(7):2579-90. PubMed ID: 19345621 [TBL] [Abstract][Full Text] [Related]
15. Molecular and functional expression of voltage-operated calcium channels during osteogenic differentiation of human mesenchymal stem cells. Zahanich I; Graf EM; Heubach JF; Hempel U; Boxberger S; Ravens U J Bone Miner Res; 2005 Sep; 20(9):1637-46. PubMed ID: 16059635 [TBL] [Abstract][Full Text] [Related]
16. Perfusion affects the tissue developmental patterns of human mesenchymal stem cells in 3D scaffolds. Zhao F; Grayson WL; Ma T; Irsigler A J Cell Physiol; 2009 May; 219(2):421-9. PubMed ID: 19170078 [TBL] [Abstract][Full Text] [Related]
18. Effect of hydrostatic pressure on bone regeneration using human mesenchymal stem cells. Huang C; Ogawa R Tissue Eng Part A; 2012 Oct; 18(19-20):2106-13. PubMed ID: 22607391 [TBL] [Abstract][Full Text] [Related]
19. Extracellular matrix protein mediated regulation of the osteoblast differentiation of bone marrow derived human mesenchymal stem cells. Mathews S; Bhonde R; Gupta PK; Totey S Differentiation; 2012 Sep; 84(2):185-92. PubMed ID: 22664173 [TBL] [Abstract][Full Text] [Related]
20. Perfusion bioreactor system for human mesenchymal stem cell tissue engineering: dynamic cell seeding and construct development. Zhao F; Ma T Biotechnol Bioeng; 2005 Aug; 91(4):482-93. PubMed ID: 15895382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]