These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 20370282)
1. On the bound of the Lyapunov exponents for the fractional differential systems. Li C; Gong Z; Qian D; Chen Y Chaos; 2010 Mar; 20(1):013127. PubMed ID: 20370282 [TBL] [Abstract][Full Text] [Related]
2. Controlled test for predictive power of Lyapunov exponents: their inability to predict epileptic seizures. Lai YC; Harrison MA; Frei MG; Osorio I Chaos; 2004 Sep; 14(3):630-42. PubMed ID: 15446973 [TBL] [Abstract][Full Text] [Related]
3. On the bound of the Lyapunov exponents for continuous systems. Li C; Xia X Chaos; 2004 Sep; 14(3):557-61. PubMed ID: 15446965 [TBL] [Abstract][Full Text] [Related]
4. Geometrical constraints on finite-time Lyapunov exponents in two and three dimensions. Thiffeault JL; Boozer AH Chaos; 2001 Mar; 11(1):16-28. PubMed ID: 12779437 [TBL] [Abstract][Full Text] [Related]
5. On estimates of Lyapunov exponents of synchronized coupled systems. Zhou T; Chen G; Lu Q; Xiong X Chaos; 2006 Sep; 16(3):033123. PubMed ID: 17014228 [TBL] [Abstract][Full Text] [Related]
6. Lyapunov Exponents of a Discontinuous 4D Hyperchaotic System of Integer or Fractional Order. Danca MF Entropy (Basel); 2018 May; 20(5):. PubMed ID: 33265427 [TBL] [Abstract][Full Text] [Related]
7. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry]. Pezard L; Nandrino JL Encephale; 2001; 27(3):260-8. PubMed ID: 11488256 [TBL] [Abstract][Full Text] [Related]
8. Scaling and interleaving of subsystem Lyapunov exponents for spatio-temporal systems. Carretero-Gonzalez R; Orstavik S; Huke J; Broomhead DS; Stark J Chaos; 1999 Jun; 9(2):466-482. PubMed ID: 12779843 [TBL] [Abstract][Full Text] [Related]
9. Universal scaling of Lyapunov-exponent fluctuations in space-time chaos. Pazó D; López JM; Politi A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062909. PubMed ID: 23848750 [TBL] [Abstract][Full Text] [Related]
10. Lyapunov exponents, dual Lyapunov exponents, and multifractal analysis. Fan A; Jiang Y Chaos; 1999 Dec; 9(4):849-853. PubMed ID: 12779880 [TBL] [Abstract][Full Text] [Related]
11. On the fractional Lyapunov exponent for Hadamard-type fractional differential system. Ma L; Wu B Chaos; 2023 Jan; 33(1):013117. PubMed ID: 36725656 [TBL] [Abstract][Full Text] [Related]
12. The largest Lyapunov exponent of chaotic dynamical system in scale space and its application. Liu HF; Yang YZ; Dai ZH; Yu ZH Chaos; 2003 Sep; 13(3):839-44. PubMed ID: 12946175 [TBL] [Abstract][Full Text] [Related]
13. Characterization of finite-time Lyapunov exponents and vectors in two-dimensional turbulence. Lapeyre G Chaos; 2002 Sep; 12(3):688-698. PubMed ID: 12779597 [TBL] [Abstract][Full Text] [Related]
14. Scaling laws for the largest Lyapunov exponent in long-range systems: A random matrix approach. Anteneodo C; Vallejos RO Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 2):016210. PubMed ID: 11800771 [TBL] [Abstract][Full Text] [Related]
15. Local Lyapunov exponents for spatiotemporal chaos. Pikovsky AS Chaos; 1993 Apr; 3(2):225-232. PubMed ID: 12780031 [TBL] [Abstract][Full Text] [Related]
16. On periodic solutions of neural networks via differential inclusions. Liu X; Cao J Neural Netw; 2009 May; 22(4):329-34. PubMed ID: 19118977 [TBL] [Abstract][Full Text] [Related]
18. Pinning control of fractional-order weighted complex networks. Tang Y; Wang Z; Fang JA Chaos; 2009 Mar; 19(1):013112. PubMed ID: 19334976 [TBL] [Abstract][Full Text] [Related]
19. A new theorem on higher order derivatives of Lyapunov functions. Meigoli V; Nikravesh SK ISA Trans; 2009 Apr; 48(2):173-9. PubMed ID: 19193370 [TBL] [Abstract][Full Text] [Related]
20. Cycles homoclinic to chaotic sets; robustness and resonance. Ashwin P Chaos; 1997 Jun; 7(2):207-220. PubMed ID: 12779649 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]