These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 20370300)

  • 1. Using hyperbolic Lagrangian coherent structures to investigate vortices in bioinspired fluid flows.
    Green MA; Rowley CW; Smits AJ
    Chaos; 2010 Mar; 20(1):017510. PubMed ID: 20370300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamic study of freely swimming shark fish propulsion for marine vehicles using 2D particle image velocimetry.
    Babu MN; Mallikarjuna JM; Krishnankutty P
    Robotics Biomim; 2016; 3():3. PubMed ID: 27077022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Locomotor function of the dorsal fin in teleost fishes: experimental analysis of wake forces in sunfish.
    Drucker EG; Lauder GV
    J Exp Biol; 2001 Sep; 204(Pt 17):2943-58. PubMed ID: 11551984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Lagrangian approach to identifying vortex pinch-off.
    O'Farrell C; Dabiri JO
    Chaos; 2010 Mar; 20(1):017513. PubMed ID: 20370303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel.
    Buchholz JH; Smits AJ
    J Fluid Mech; 2008 Apr; 603():331-365. PubMed ID: 19746195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Median fin function in bluegill sunfish Lepomis macrochirus: streamwise vortex structure during steady swimming.
    Tytell ED
    J Exp Biol; 2006 Apr; 209(Pt 8):1516-34. PubMed ID: 16574809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vortex interactions with flapping wings and fins can be unpredictable.
    Lentink D; Van Heijst GF; Muijres FT; Van Leeuwen JL
    Biol Lett; 2010 Jun; 6(3):394-7. PubMed ID: 20129947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluid transport and coherent structures of translating and flapping wings.
    Eldredge JD; Chong K
    Chaos; 2010 Mar; 20(1):017509. PubMed ID: 20370299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refuging rainbow trout selectively exploit flows behind tandem cylinders.
    Stewart WJ; Tian FB; Akanyeti O; Walker CJ; Liao JC
    J Exp Biol; 2016 Jul; 219(Pt 14):2182-91. PubMed ID: 27445401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model-based observer and feedback control design for a rigid Joukowski foil in a Kármán vortex street.
    Free BA; Paley DA
    Bioinspir Biomim; 2018 Mar; 13(3):035001. PubMed ID: 29355109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Lagrangian coherent structures to analyze fluid mixing by cilia.
    Lukens S; Yang X; Fauci L
    Chaos; 2010 Mar; 20(1):017511. PubMed ID: 20370301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational hydrodynamics of animal swimming: boundary element method and three-dimensional vortex wake structure.
    Cheng JY; Chahine GL
    Comp Biochem Physiol A Mol Integr Physiol; 2001 Dec; 131(1):51-60. PubMed ID: 11733166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Undulating fins produce off-axis thrust and flow structures.
    Neveln ID; Bale R; Bhalla AP; Curet OM; Patankar NA; MacIver MA
    J Exp Biol; 2014 Jan; 217(Pt 2):201-13. PubMed ID: 24072799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street.
    Liao JC; Beal DN; Lauder GV; Triantafyllou MS
    J Exp Biol; 2003 Mar; 206(Pt 6):1059-73. PubMed ID: 12582148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laboratory study on behavioral responses of hybrid sturgeon, Acipenseridae, to wake flows induced by cylindrical bluff bodies.
    Zha W; Zeng Y; Katul G; Li Q; Liu X; Chen X
    Sci Total Environ; 2021 Dec; 799():149403. PubMed ID: 34364287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrodynamic interaction of dorsal fin and caudal fin in swimming tuna.
    Zhang JD; Sung HJ; Huang WX
    Bioinspir Biomim; 2022 Sep; 17(6):. PubMed ID: 35896094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of the vortex wakes of flying and swimming vertebrates.
    Rayner JM
    Symp Soc Exp Biol; 1995; 49():131-55. PubMed ID: 8571221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vortex-wake interactions of a flapping foil that models animal swimming and flight.
    Lentink D; Muijres FT; Donker-Duyvis FJ; van Leeuwen JL
    J Exp Biol; 2008 Jan; 211(Pt 2):267-73. PubMed ID: 18165254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved swimming performance in schooling fish via leading-edge vortex enhancement.
    Seo JH; Mittal R
    Bioinspir Biomim; 2022 Nov; 17(6):. PubMed ID: 36261046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The hydrodynamics of eel swimming: I. Wake structure.
    Tytell ED; Lauder GV
    J Exp Biol; 2004 May; 207(Pt 11):1825-41. PubMed ID: 15107438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.