BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 20370318)

  • 1. Involvement of the calcium sensor GCAP1 in hereditary cone dystrophies.
    Behnen P; Dell'Orco D; Koch KW
    Biol Chem; 2010 Jun; 391(6):631-7. PubMed ID: 20370318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations in the GUCA1A gene involved in hereditary cone dystrophies impair calcium-mediated regulation of guanylate cyclase.
    Kitiratschky VB; Behnen P; Kellner U; Heckenlively JR; Zrenner E; Jägle H; Kohl S; Wissinger B; Koch KW
    Hum Mutat; 2009 Aug; 30(8):E782-96. PubMed ID: 19459154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A G86R mutation in the calcium-sensor protein GCAP1 alters regulation of retinal guanylyl cyclase and causes dominant cone-rod degeneration.
    Peshenko IV; Cideciyan AV; Sumaroka A; Olshevskaya EV; Scholten A; Abbas S; Koch KW; Jacobson SG; Dizhoor AM
    J Biol Chem; 2019 Mar; 294(10):3476-3488. PubMed ID: 30622141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of cone dystrophy-related mutations in GCAP1 on a kinetic model of phototransduction.
    Dell'Orco D; Sulmann S; Zägel P; Marino V; Koch KW
    Cell Mol Life Sci; 2014 Oct; 71(19):3829-40. PubMed ID: 24566882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guanylate cyclase-activating protein 2 contributes to phototransduction and light adaptation in mouse cone photoreceptors.
    Vinberg F; Peshenko IV; Chen J; Dizhoor AM; Kefalov VJ
    J Biol Chem; 2018 May; 293(19):7457-7465. PubMed ID: 29549122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guanylate cyclase-activating proteins: structure, function, and diversity.
    Palczewski K; Sokal I; Baehr W
    Biochem Biophys Res Commun; 2004 Oct; 322(4):1123-30. PubMed ID: 15336959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The crystal structure of GCAP3 suggests molecular mechanism of GCAP-linked cone dystrophies.
    Stephen R; Palczewski K; Sousa MC
    J Mol Biol; 2006 Jun; 359(2):266-75. PubMed ID: 16626734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Missense mutations affecting Ca
    Dal Cortivo G; Marino V; Bonì F; Milani M; Dell'Orco D
    Biochim Biophys Acta Mol Cell Res; 2020 Oct; 1867(10):118794. PubMed ID: 32650103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dimerization domain in outer segment guanylate cyclase is a Ca²⁺-sensitive control switch module.
    Zägel P; Dell'Orco D; Koch KW
    Biochemistry; 2013 Jul; 52(30):5065-74. PubMed ID: 23815670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-modulated guanylate cyclase transduction machinery in the photoreceptor--bipolar synaptic region.
    Venkataraman V; Duda T; Vardi N; Koch KW; Sharma RK
    Biochemistry; 2003 May; 42(19):5640-8. PubMed ID: 12741820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic relay mechanism stimulates cyclic GMP synthesis in rod photoresponse: biochemical and physiological study in guanylyl cyclase activating protein 1 knockout mice.
    Makino CL; Wen XH; Olshevskaya EV; Peshenko IV; Savchenko AB; Dizhoor AM
    PLoS One; 2012; 7(10):e47637. PubMed ID: 23082185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normal GCAPs partly compensate for altered cGMP signaling in retinal dystrophies associated with mutations in GUCA1A.
    Dell'Orco D; Dal Cortivo G
    Sci Rep; 2019 Dec; 9(1):20105. PubMed ID: 31882816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GCAP1 mutations associated with autosomal dominant cone dystrophy.
    Jiang L; Baehr W
    Adv Exp Med Biol; 2010; 664():273-82. PubMed ID: 20238026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Insights into Retinal Guanylate Cyclase Activator Proteins (GCAPs).
    Ames JB
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium binding, structural stability and guanylate cyclase activation in GCAP1 variants associated with human cone dystrophy.
    Dell'Orco D; Behnen P; Linse S; Koch KW
    Cell Mol Life Sci; 2010 Mar; 67(6):973-84. PubMed ID: 20213926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guanylate cyclase activating proteins, guanylate cyclase and disease.
    Newbold RJ; Deery EC; Payne AM; Wilkie SE; Hunt DM; Warren MJ
    Adv Exp Med Biol; 2002; 514():411-38. PubMed ID: 12596936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two retinal dystrophy-associated missense mutations in GUCA1A with distinct molecular properties result in a similar aberrant regulation of the retinal guanylate cyclase.
    Marino V; Scholten A; Koch KW; Dell'Orco D
    Hum Mol Genet; 2015 Dec; 24(23):6653-66. PubMed ID: 26358777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium-modulated rod outer segment membrane guanylate cyclase type 1 transduction machinery in the testes.
    Jankowska A; Burczynska B; Duda T; Warchol JB; Sharma RK
    J Androl; 2007; 28(1):50-8. PubMed ID: 16928896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional reconstitution of photoreceptor guanylate cyclase with native and mutant forms of guanylate cyclase-activating protein 1.
    Otto-Bruc A; Buczylko J; Surgucheva I; Subbaraya I; Rudnicka-Nawrot M; Crabb JW; Arendt A; Hargrave PA; Baehr W; Palczewski K
    Biochemistry; 1997 Apr; 36(14):4295-302. PubMed ID: 9100025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel
    Biasi A; Marino V; Dal Cortivo G; Maltese PE; Modarelli AM; Bertelli M; Colombo L; Dell'Orco D
    Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.