These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 20370692)

  • 1. Computational approaches for the discovery of cysteine protease inhibitors against malaria and SARS.
    Shah F; Mukherjee P; Desai P; Avery M
    Curr Comput Aided Drug Des; 2010 Mar; 6(1):1-23. PubMed ID: 20370692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting Cysteine Proteases from Plasmodium falciparum: A General Overview, Rational Drug Design and Computational Approaches for Drug Discovery.
    Bekono BD; Ntie-Kang F; Owono Owono LC; Megnassan E
    Curr Drug Targets; 2018; 19(5):501-526. PubMed ID: 28003005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Falcipains, Plasmodium falciparum cysteine proteases as key drug targets against malaria.
    Teixeira C; Gomes JR; Gomes P
    Curr Med Chem; 2011; 18(10):1555-72. PubMed ID: 21428877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cysteine proteases of malaria parasites: targets for chemotherapy.
    Rosenthal PJ; Sijwali PS; Singh A; Shenai BR
    Curr Pharm Des; 2002; 8(18):1659-72. PubMed ID: 12132997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of novel malarial cysteine protease inhibitors using structure-based virtual screening of a focused cysteine protease inhibitor library.
    Shah F; Mukherjee P; Gut J; Legac J; Rosenthal PJ; Tekwani BL; Avery MA
    J Chem Inf Model; 2011 Apr; 51(4):852-64. PubMed ID: 21428453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases.
    Park JY; Kim JH; Kim YM; Jeong HJ; Kim DW; Park KH; Kwon HJ; Park SJ; Lee WS; Ryu YB
    Bioorg Med Chem; 2012 Oct; 20(19):5928-35. PubMed ID: 22884354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Falcipain inhibition as a promising antimalarial target.
    Marco M; Coterón JM
    Curr Top Med Chem; 2012; 12(5):408-44. PubMed ID: 22242849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cysteine proteases of malaria parasites.
    Rosenthal PJ
    Int J Parasitol; 2004 Dec; 34(13-14):1489-99. PubMed ID: 15582526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of novel parasitic cysteine protease inhibitors by use of virtual screening. 2. The available chemical directory.
    Desai PV; Patny A; Gut J; Rosenthal PJ; Tekwani B; Srivastava A; Avery M
    J Med Chem; 2006 Mar; 49(5):1576-84. PubMed ID: 16509575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Power of Molecular Dynamics Simulations and Their Applications to Discover Cysteine Protease Inhibitors.
    Dos Santos Nascimento IJ; Gomes JNS; de Oliveira Viana J; de Medeiros E Silva YMS; Barbosa EG; de Moura RO
    Mini Rev Med Chem; 2024; 24(11):1125-1146. PubMed ID: 37680157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel broad-spectrum activity-based probes to profile malarial cysteine proteases.
    Tan MSY; Davison D; Sanchez MI; Anderson BM; Howell S; Snijders A; Edgington-Mitchell LE; Deu E
    PLoS One; 2020; 15(1):e0227341. PubMed ID: 31923258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based Approaches Targeting Parasite Cysteine Proteases.
    Vieira RP; Santos VC; Ferreira RS
    Curr Med Chem; 2019; 26(23):4435-4453. PubMed ID: 28799498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Falcipains and other cysteine proteases of malaria parasites.
    Rosenthal PJ
    Adv Exp Med Biol; 2011; 712():30-48. PubMed ID: 21660657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of novel parasitic cysteine protease inhibitors using virtual screening. 1. The ChemBridge database.
    Desai PV; Patny A; Sabnis Y; Tekwani B; Gut J; Rosenthal P; Srivastava A; Avery M
    J Med Chem; 2004 Dec; 47(26):6609-15. PubMed ID: 15588096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel 2H-isoquinolin-3-ones as antiplasmodial falcipain-2 inhibitors.
    Micale N; Ettari R; Schirmeister T; Evers A; Gelhaus C; Leippe M; Zappalà M; Grasso S
    Bioorg Med Chem; 2009 Sep; 17(18):6505-11. PubMed ID: 19709887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug Discovery Efforts to Identify Novel Treatments for Neglected Tropical Diseases - Cysteine Protease Inhibitors.
    Giroud M; Kuhn B; Haap W
    Curr Med Chem; 2024; 31(16):2170-2194. PubMed ID: 37916489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular modeling in cysteine protease inhibitor design.
    Lindvall MK
    Curr Pharm Des; 2002; 8(18):1673-81. PubMed ID: 12132998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Falcipain inhibitors as potential therapeutics for resistant strains of malaria: a patent review.
    Mane UR; Gupta RC; Nadkarni SS; Giridhar RR; Naik PP; Yadav MR
    Expert Opin Ther Pat; 2013 Feb; 23(2):165-87. PubMed ID: 23228154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cysteine protease inhibitors: from evolutionary relationships to modern chemotherapeutic design for the treatment of infectious diseases.
    Toh EC; Huq NL; Dashper SG; Reynolds EC
    Curr Protein Pept Sci; 2010 Dec; 11(8):725-43. PubMed ID: 21235508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural characterization of vivapain-2 and vivapain-3, cysteine proteases from Plasmodium vivax: comparative protein modeling and docking studies.
    Desai PV; Avery MA
    J Biomol Struct Dyn; 2004 Jun; 21(6):781-90. PubMed ID: 15107000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.