These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
353 related articles for article (PubMed ID: 20370855)
21. The antibody response against MART-1 differs in patients with melanoma-associated leucoderma and vitiligo. Teulings HE; Willemsen KJ; Glykofridis I; Krebbers G; Komen L; Kroon MW; Kemp EH; Wolkerstorfer A; van der Veen JP; Luiten RM; Tjin EP Pigment Cell Melanoma Res; 2014 Nov; 27(6):1086-96. PubMed ID: 25043574 [TBL] [Abstract][Full Text] [Related]
22. Qualitative difference between the cytotoxic T lymphocyte responses to melanocyte antigens in melanoma and vitiligo. Palermo B; Garbelli S; Mantovani S; Scoccia E; Da Prada GA; Bernabei P; Avanzini MA; Brazzelli V; Borroni G; Giachino C Eur J Immunol; 2005 Nov; 35(11):3153-62. PubMed ID: 16224813 [TBL] [Abstract][Full Text] [Related]
23. Evaluation of activatory and inhibitory natural killer cell receptors in non-segmental vitiligo: a flow cytometric study. Basak PY; Adiloglu AK; Koc IG; Tas T; Akkaya VB J Eur Acad Dermatol Venereol; 2008 Aug; 22(8):970-6. PubMed ID: 18482314 [TBL] [Abstract][Full Text] [Related]
24. Dysregulation of melanocyte function by Th17-related cytokines: significance of Th17 cell infiltration in autoimmune vitiligo vulgaris. Kotobuki Y; Tanemura A; Yang L; Itoi S; Wataya-Kaneda M; Murota H; Fujimoto M; Serada S; Naka T; Katayama I Pigment Cell Melanoma Res; 2012 Mar; 25(2):219-30. PubMed ID: 22136309 [TBL] [Abstract][Full Text] [Related]
25. Peripheral CD8+ T cell tolerance against melanocytic self-antigens in the skin is regulated in two steps by CD4+ T cells and local inflammation: implications for the pathophysiology of vitiligo. Steitz J; Brück J; Lenz J; Büchs S; Tüting T J Invest Dermatol; 2005 Jan; 124(1):144-50. PubMed ID: 15654968 [TBL] [Abstract][Full Text] [Related]
28. Decreased CD117 expression in hypopigmented mycosis fungoides correlates with hypomelanosis: lessons learned from vitiligo. Singh ZN; Tretiakova MS; Shea CR; Petronic-Rosic VM Mod Pathol; 2006 Sep; 19(9):1255-60. PubMed ID: 16778827 [TBL] [Abstract][Full Text] [Related]
29. Melanocyte-specific CD8+ T cells are associated with epidermal depigmentation in a novel mouse model of vitiligo. You S; Cho YH; Byun JS; Shin EC Clin Exp Immunol; 2013 Oct; 174(1):38-44. PubMed ID: 23711243 [TBL] [Abstract][Full Text] [Related]
30. Presence of T cells and macrophages in inflammatory vitiligo skin parallels melanocyte disappearance. Le Poole IC; van den Wijngaard RM; Westerhof W; Das PK Am J Pathol; 1996 Apr; 148(4):1219-28. PubMed ID: 8644862 [TBL] [Abstract][Full Text] [Related]
31. Differences in the melanosome distribution within the epidermal melanin units and its association with the impairing background of leukoderma in vitiligo and halo nevi: a retrospective study. Xiong XX; Ding GZ; Zhao WE; Li X; Ling YT; Sun L; Gong QL; Lu Y Arch Dermatol Res; 2017 Jul; 309(5):323-333. PubMed ID: 28314912 [TBL] [Abstract][Full Text] [Related]
32. Characterization of circulating CD8+T cells expressing skin homing and cytotoxic molecules in active non-segmental vitiligo. Zhang BX; Lin M; Qi XY; Zhang RX; Wei ZD; Zhu J; Man MQ; Tu CX Eur J Dermatol; 2013; 23(3):331-8. PubMed ID: 23782916 [TBL] [Abstract][Full Text] [Related]
34. ATP-P2X7-Induced Inflammasome Activation Contributes to Melanocyte Death and CD8 Ahn Y; Seo J; Lee EJ; Kim JY; Park MY; Hwang S; Almurayshid A; Lim BJ; Yu JW; Oh SH J Invest Dermatol; 2020 Sep; 140(9):1794-1804.e4. PubMed ID: 32035094 [TBL] [Abstract][Full Text] [Related]
35. Foxp3(+) regulatory T cells are increased in the early stages of halo nevi: clinicopathological features of 30 halo nevi. Park HS; Jin SA; Choi YD; Shin MH; Lee SE; Yun SJ Dermatology; 2012; 225(2):172-8. PubMed ID: 23006793 [TBL] [Abstract][Full Text] [Related]
36. Pathogenetic mechanisms of vitiligo in a patient with Sézary syndrome. Knol AC; Quéreux G; Marques-Briand S; Pandolfino MC; Khammari A; Guilloux Y; Dreno B Br J Dermatol; 2005 Dec; 153(6):1207-12. PubMed ID: 16307660 [TBL] [Abstract][Full Text] [Related]
37. A comparative study of mitochondrial ultrastructure in melanocytes from perilesional vitiligo skin and perilesional halo nevi skin. Ding GZ; Zhao WE; Li X; Gong QL; Lu Y Arch Dermatol Res; 2015 Apr; 307(3):281-9. PubMed ID: 25672813 [TBL] [Abstract][Full Text] [Related]
38. Molecular and functional bases of self-antigen recognition in long-term persistent melanocyte-specific CD8+ T cells in one vitiligo patient. Mantovani S; Garbelli S; Palermo B; Campanelli R; Brazzelli V; Borroni G; Martinetti M; Benvenuto F; Merlini G; della Cuna GR; Rivoltini L; Giachino C J Invest Dermatol; 2003 Aug; 121(2):308-14. PubMed ID: 12880423 [TBL] [Abstract][Full Text] [Related]
39. Melanocyte antigen-specific antibodies cannot be used as markers for recent disease activity in patients with vitiligo. Kroon MW; Kemp EH; Wind BS; Krebbers G; Bos JD; Gawkrodger DJ; Wolkerstorfer A; van der Veen JP; Luiten RM J Eur Acad Dermatol Venereol; 2013 Sep; 27(9):1172-5. PubMed ID: 22404127 [TBL] [Abstract][Full Text] [Related]
40. Halo nevi association in nonsegmental vitiligo affects age at onset and depigmentation pattern. Ezzedine K; Diallo A; Léauté-Labrèze C; Seneschal J; Mossalayi D; AlGhamdi K; Prey S; Bouchtnei S; Cario-André M; Boralevi F; Jouary T; Taieb A Arch Dermatol; 2012 Apr; 148(4):497-502. PubMed ID: 22508876 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]