These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
697 related articles for article (PubMed ID: 20371256)
1. Generation of stable cell lines by site-specific integration of transgenes into engineered Chinese hamster ovary strains using an FLP-FRT system. Zhou H; Liu ZG; Sun ZW; Huang Y; Yu WY J Biotechnol; 2010 May; 147(2):122-9. PubMed ID: 20371256 [TBL] [Abstract][Full Text] [Related]
2. [Development of site-specific integration system to high-level expression recombinant proteins in CHO cells]. Zhou H; Liu ZG; Sun ZW; Yu WY Sheng Wu Gong Cheng Xue Bao; 2007 Jul; 23(4):756-62. PubMed ID: 17822058 [TBL] [Abstract][Full Text] [Related]
3. An efficient and targeted gene integration system for high-level antibody expression. Huang Y; Li Y; Wang YG; Gu X; Wang Y; Shen BF J Immunol Methods; 2007 Apr; 322(1-2):28-39. PubMed ID: 17350648 [TBL] [Abstract][Full Text] [Related]
4. Construction of engineered CHO strains for high-level production of recombinant proteins. Kito M; Itami S; Fukano Y; Yamana K; Shibui T Appl Microbiol Biotechnol; 2002 Dec; 60(4):442-8. PubMed ID: 12466885 [TBL] [Abstract][Full Text] [Related]
5. A single-plasmid vector for transgene amplification using short hairpin RNA targeting the 3'-UTR of amplifiable dhfr. Kang SY; Kim YG; Lee HW; Lee EG Appl Microbiol Biotechnol; 2015 Dec; 99(23):10117-26. PubMed ID: 26245680 [TBL] [Abstract][Full Text] [Related]
6. The isolation of CHO cells with a site conferring a high and reproducible transgene amplification rate. Cacciatore JJ; Leonard EF; Chasin LA J Biotechnol; 2012 Dec; 164(2):346-53. PubMed ID: 23376841 [TBL] [Abstract][Full Text] [Related]
7. Rapid amplification system for recombinant protein production in Chinese Hamster Ovary (CHO) Cells. Metta MK; Kunaparaju RK; Tantravahi S Cell Mol Biol (Noisy-le-grand); 2016 Feb; 62(2):101-6. PubMed ID: 26950459 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome dynamics of transgene amplification in Chinese hamster ovary cells. Vishwanathan N; Le H; Jacob NM; Tsao YS; Ng SW; Loo B; Liu Z; Kantardjieff A; Hu WS Biotechnol Bioeng; 2014 Mar; 111(3):518-28. PubMed ID: 24108600 [TBL] [Abstract][Full Text] [Related]
9. A method for specifically targeting two independent genomic integration sites for co-expression of genes in CHO cells. Baser B; Spehr J; Büssow K; van den Heuvel J Methods; 2016 Feb; 95():3-12. PubMed ID: 26658354 [TBL] [Abstract][Full Text] [Related]
10. Preselection of recombinant gene integration sites enabling high transcription rates in CHO cells using alternate start codons and recombinase mediated cassette exchange. Baumann M; Gludovacz E; Sealover N; Bahr S; George H; Lin N; Kayser K; Borth N Biotechnol Bioeng; 2017 Nov; 114(11):2616-2627. PubMed ID: 28734047 [TBL] [Abstract][Full Text] [Related]
11. Enhancing Protein Production Yield from Chinese Hamster Ovary Cells by CRISPR Interference. Shen CC; Sung LY; Lin SY; Lin MW; Hu YC ACS Synth Biol; 2017 Aug; 6(8):1509-1519. PubMed ID: 28418635 [TBL] [Abstract][Full Text] [Related]
12. A novel RNA silencing vector to improve antigen expression and stability in Chinese hamster ovary cells. Hong WW; Wu SC Vaccine; 2007 May; 25(20):4103-11. PubMed ID: 17428585 [TBL] [Abstract][Full Text] [Related]
13. A study of monoclonal antibody-producing CHO cell lines: what makes a stable high producer? Chusainow J; Yang YS; Yeo JH; Toh PC; Asvadi P; Wong NS; Yap MG Biotechnol Bioeng; 2009 Mar; 102(4):1182-96. PubMed ID: 18979540 [TBL] [Abstract][Full Text] [Related]
14. High-level expression of proteins in mammalian cells using transcription regulatory sequences from the Chinese hamster EF-1alpha gene. Running Deer J; Allison DS Biotechnol Prog; 2004; 20(3):880-9. PubMed ID: 15176895 [TBL] [Abstract][Full Text] [Related]
15. Highly sialylated recombinant human erythropoietin production in large-scale perfusion bioreactor utilizing CHO-gmt4 (JW152) with restored GnT I function. Goh JS; Liu Y; Liu H; Chan KF; Wan C; Teo G; Zhou X; Xie F; Zhang P; Zhang Y; Song Z Biotechnol J; 2014 Jan; 9(1):100-9. PubMed ID: 24166780 [TBL] [Abstract][Full Text] [Related]
16. Engineering selection stringency on expression vector for the production of recombinant human alpha1-antitrypsin using Chinese Hamster ovary cells. Chin CL; Chin HK; Chin CS; Lai ET; Ng SK BMC Biotechnol; 2015 Jun; 15():44. PubMed ID: 26033090 [TBL] [Abstract][Full Text] [Related]
17. Short hairpin RNA targeted to dihydrofolate reductase enhances the immunoglobulin G expression in gene-amplified stable Chinese hamster ovary cells. Wu SC; Hong WW; Liu JH Vaccine; 2008 Sep; 26(38):4969-74. PubMed ID: 18602963 [TBL] [Abstract][Full Text] [Related]
18. A novel regulatory element (E77) isolated from CHO-K1 genomic DNA enhances stable gene expression in Chinese hamster ovary cells. Kang SY; Kim YG; Kang S; Lee HW; Lee EG Biotechnol J; 2016 May; 11(5):633-41. PubMed ID: 26762773 [TBL] [Abstract][Full Text] [Related]
19. Gene amplification and vector engineering to achieve rapid and high-level therapeutic protein production using the Dhfr-based CHO cell selection system. Cacciatore JJ; Chasin LA; Leonard EF Biotechnol Adv; 2010; 28(6):673-81. PubMed ID: 20416368 [TBL] [Abstract][Full Text] [Related]
20. A novel Bxb1 integrase RMCE system for high fidelity site-specific integration of mAb expression cassette in CHO Cells. Inniss MC; Bandara K; Jusiak B; Lu TK; Weiss R; Wroblewska L; Zhang L Biotechnol Bioeng; 2017 Aug; 114(8):1837-1846. PubMed ID: 28186334 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]