These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 20371276)
1. Correlation between the FT-IR characteristics and metoprolol tartrate release of methylcellulose-based patches. Papp J; Horgos J; Szente V; Zelkó R Int J Pharm; 2010 Jun; 392(1-2):189-91. PubMed ID: 20371276 [TBL] [Abstract][Full Text] [Related]
2. Correlation between the free volume and the metoprolol tartrate release of Metolose patches. Papp J; Szente V; Süvegh K; Zelkó R J Pharm Biomed Anal; 2010 Jan; 51(1):244-7. PubMed ID: 19647965 [TBL] [Abstract][Full Text] [Related]
3. The influence of Metolose structure on the free volume and the consequent metoprolol tartrate release of patches. Papp J; Marton S; Süvegh K; Zelkó R Int J Biol Macromol; 2009 Jan; 44(1):6-8. PubMed ID: 18940196 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and characterization of Zwitterionic co-polymers as matrices for sustained metoprolol tartrate delivery. Kamenska E; Kostova B; Ivanov I; Rachev D; Georgiev G J Biomater Sci Polym Ed; 2009; 20(2):181-97. PubMed ID: 19154669 [TBL] [Abstract][Full Text] [Related]
5. Development of matrix controlled transdermal delivery systems of pentazocine: In vitro/in vivo performance. Prasad Verma PR; Chandak AR Acta Pharm; 2009 Jun; 59(2):171-86. PubMed ID: 19564142 [TBL] [Abstract][Full Text] [Related]
6. Optimization of bilayer floating tablet containing metoprolol tartrate as a model drug for gastric retention. Narendra C; Srinath MS; Babu G AAPS PharmSciTech; 2006 Apr; 7(2):E34. PubMed ID: 16796352 [TBL] [Abstract][Full Text] [Related]
7. Formulation and evaluation of delayed-onset extended-release tablets of metoprolol tartrate using hydrophilic-swellable polymers. Dadarwal SC; Madan S; Agrawal SS Acta Pharm; 2012 Mar; 62(1):105-14. PubMed ID: 22472453 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of in vitro release rate and in vivo absorption characteristics of four metoprolol tartrate immediate-release tablet formulations. Rekhi GS; Eddington ND; Fossler MJ; Schwartz P; Lesko LJ; Augsburger LL Pharm Dev Technol; 1997 Feb; 2(1):11-24. PubMed ID: 9552427 [TBL] [Abstract][Full Text] [Related]
9. Optimization of fluid bed formulations of metoprolol granules and tablets using an experimental design. Tomuţă I; Alecu C; Rus LL; Leuçuta SE Drug Dev Ind Pharm; 2009 Sep; 35(9):1072-81. PubMed ID: 19353417 [TBL] [Abstract][Full Text] [Related]
10. Sublingual fast dissolving niosomal films for enhanced bioavailability and prolonged effect of metoprolol tartrate. Allam A; Fetih G Drug Des Devel Ther; 2016; 10():2421-33. PubMed ID: 27536063 [TBL] [Abstract][Full Text] [Related]
11. Pulsatile multiparticulate drug delivery system for metoprolol succinate. Jagdale SC; Chede SM; Gulwady R; Kuchekar BS; Lokhande PD; Shah TP; Chabukswar AR Arch Pharm Res; 2011 Mar; 34(3):369-76. PubMed ID: 21547667 [TBL] [Abstract][Full Text] [Related]
12. [The factors influencing metoprolol succinate release from hydroxypropyl methylcellulose matrix tablet]. Huang G; Wang R; Wang D; Zhang Z; Deng S Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Jun; 23(3):587-91. PubMed ID: 16856395 [TBL] [Abstract][Full Text] [Related]
13. A study on the release mechanism of drugs from hydrophilic partially coated perforated matrices. Sangalli ME; Maroni A; Zema L; Cerea M; Conte U; Gazzaniga A Farmaco; 2003 Sep; 58(9):971-6. PubMed ID: 13679193 [TBL] [Abstract][Full Text] [Related]
14. Influence of soluble and insoluble cyclodextrin polymers on drug release from hydroxypropyl methylcellulose tablets. Zugasti ME; Zornoza A; Goñi Mdel M; Isasi JR; Vélaz I; Martín C; Sánchez M; Martínez-Ohárriz MC Drug Dev Ind Pharm; 2009 Oct; 35(10):1264-70. PubMed ID: 19555243 [TBL] [Abstract][Full Text] [Related]
15. Controlled release floating multiparticulates of metoprolol succinate by hot melt extrusion. Malode VN; Paradkar A; Devarajan PV Int J Pharm; 2015 Aug; 491(1-2):345-51. PubMed ID: 26142246 [TBL] [Abstract][Full Text] [Related]
16. Matrix type transdermal drug delivery systems of metoprolol tartrate: in vitro characterization. Aqil M; Sultana Y; Ali A Acta Pharm; 2003 Jun; 53(2):119-25. PubMed ID: 14764246 [TBL] [Abstract][Full Text] [Related]
17. Potential application of Metolose in a thermoresponsive transdermal therapeutic system. Csóka G; Gelencsér A; Makó A; Marton S; Zelkó R; Klebovich I; Antal I Int J Pharm; 2007 Jun; 338(1-2):15-20. PubMed ID: 17331682 [TBL] [Abstract][Full Text] [Related]
18. Effect of methylcellulose on the formation and drug release behavior of silk fibroin hydrogel. Park CH; Jeong L; Cho D; Kwon OH; Park WH Carbohydr Polym; 2013 Oct; 98(1):1179-85. PubMed ID: 23987461 [TBL] [Abstract][Full Text] [Related]
19. Thermodynamic study of binary system Propafenone Hydrocloride with Metoprolol Tartrate: solid-liquid equilibrium and compatibility with α-lactose monohydrate and corn starch. Marinescu DC; Pincu E; Meltzer V Int J Pharm; 2013 May; 448(2):366-72. PubMed ID: 23545398 [TBL] [Abstract][Full Text] [Related]
20. The application of conductivity measurements for preliminary assessments of chlorhexidine and lidocaine hydrochloride release from methylcellulose gel at various temperatures. Musial W; Kokol V; Voncina B Polim Med; 2009; 39(2):17-29. PubMed ID: 19708498 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]