These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 20371310)

  • 1. Thermal adaptation of viruses and bacteria.
    Chen P; Shakhnovich EI
    Biophys J; 2010 Apr; 98(7):1109-18. PubMed ID: 20371310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lethal mutagenesis in viruses and bacteria.
    Chen P; Shakhnovich EI
    Genetics; 2009 Oct; 183(2):639-50. PubMed ID: 19620390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein stability imposes limits on organism complexity and speed of molecular evolution.
    Zeldovich KB; Chen P; Shakhnovich EI
    Proc Natl Acad Sci U S A; 2007 Oct; 104(41):16152-7. PubMed ID: 17913881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physics and evolution of thermophilic adaptation.
    Berezovsky IN; Shakhnovich EI
    Proc Natl Acad Sci U S A; 2005 Sep; 102(36):12742-7. PubMed ID: 16120678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Biokinetic Spectrum for Temperature and optimal Darwinian fitness.
    Corkrey R; Macdonald C; McMeekin T
    J Theor Biol; 2019 Feb; 462():171-183. PubMed ID: 30385312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The YoeB toxin is a folded protein that forms a physical complex with the unfolded YefM antitoxin. Implications for a structural-based differential stability of toxin-antitoxin systems.
    Cherny I; Rockah L; Gazit E
    J Biol Chem; 2005 Aug; 280(34):30063-72. PubMed ID: 15980067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary adaptation to temperature. VIII. Effects of temperature on growth rate in natural isolates of Escherichia coli and Salmonella enterica from different thermal environments.
    Bronikowski AM; Bennett AF; Lenski RE
    Evolution; 2001 Jan; 55(1):33-40. PubMed ID: 11263744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics of denaturation of barstar: evidence for cold denaturation and evaluation of the interaction with guanidine hydrochloride.
    Agashe VR; Udgaonkar JB
    Biochemistry; 1995 Mar; 34(10):3286-99. PubMed ID: 7880824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteins from hyperthermophiles: stability and enzymatic catalysis close to the boiling point of water.
    Ladenstein R; Antranikian G
    Adv Biochem Eng Biotechnol; 1998; 61():37-85. PubMed ID: 9670797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying kinetic paths of protein folding.
    Wang J; Zhang K; Lu H; Wang E
    Biophys J; 2005 Sep; 89(3):1612-20. PubMed ID: 15994895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal denaturation of a native protein via spinodal decomposition in the framework of first-passage-time analysis.
    Djikaev YS; Ruckenstein E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011909. PubMed ID: 18763984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature effects on the nucleation mechanism of protein folding and on the barrierless thermal denaturation of a native protein.
    Djikaev YS; Ruckenstein E
    Phys Chem Chem Phys; 2008 Nov; 10(41):6281-300. PubMed ID: 18936853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trehalose delays the reversible but not the irreversible thermal denaturation of cutinase.
    Baptista RP; Cabral JM; Melo EP
    Biotechnol Bioeng; 2000 Dec; 70(6):699-703. PubMed ID: 11064340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictable properties of fitness landscapes induced by adaptational tradeoffs.
    Das SG; Direito SO; Waclaw B; Allen RJ; Krug J
    Elife; 2020 May; 9():. PubMed ID: 32423531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the chemical and thermal denaturation of proteins by a two-state transition model.
    Ramprakash J; Doseeva V; Galkin A; Krajewski W; Muthukumar L; Pullalarevu S; Demirkan E; Herzberg O; Moult J; Schwarz FP
    Anal Biochem; 2008 Mar; 374(1):221-30. PubMed ID: 17964274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic differences among homologous thermophilic and mesophilic proteins.
    Kumar S; Tsai CJ; Nussinov R
    Biochemistry; 2001 Nov; 40(47):14152-65. PubMed ID: 11714268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Survival of the simplest in microbial evolution.
    Held T; Klemmer D; Lässig M
    Nat Commun; 2019 Jun; 10(1):2472. PubMed ID: 31171781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EVOLUTIONARY ADAPTATION TO TEMPERATURE. I. FITNESS RESPONSES OF ESCHERICHIA COLI TO CHANGES IN ITS THERMAL ENVIRONMENT.
    Bennett AF; Lenski RE; Mittler JE
    Evolution; 1992 Feb; 46(1):16-30. PubMed ID: 28564952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The genetic basis of thermal reaction norm evolution in lab and natural phage populations.
    Knies JL; Izem R; Supler KL; Kingsolver JG; Burch CL
    PLoS Biol; 2006 Jul; 4(7):e201. PubMed ID: 16732695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folding of small proteins using a single continuous potential.
    Kim SY; Lee J; Lee J
    J Chem Phys; 2004 May; 120(17):8271-6. PubMed ID: 15267747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.