These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 20371312)

  • 61. Dynamic changes of cardiac conduction during rapid pacing.
    Kondratyev AA; Ponard JG; Munteanu A; Rohr S; Kucera JP
    Am J Physiol Heart Circ Physiol; 2007 Apr; 292(4):H1796-811. PubMed ID: 17142344
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Alternans and spiral breakup in a human ventricular tissue model.
    ten Tusscher KH; Panfilov AV
    Am J Physiol Heart Circ Physiol; 2006 Sep; 291(3):H1088-100. PubMed ID: 16565318
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Molecular correlates of repolarization alternans in cardiac myocytes.
    Wan X; Laurita KR; Pruvot EJ; Rosenbaum DS
    J Mol Cell Cardiol; 2005 Sep; 39(3):419-28. PubMed ID: 16026799
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Heart failure enhances susceptibility to arrhythmogenic cardiac alternans.
    Wilson LD; Jeyaraj D; Wan X; Hoeker GS; Said TH; Gittinger M; Laurita KR; Rosenbaum DS
    Heart Rhythm; 2009 Feb; 6(2):251-9. PubMed ID: 19187920
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Dynamic origin of spatially discordant alternans in cardiac tissue.
    Hayashi H; Shiferaw Y; Sato D; Nihei M; Lin SF; Chen PS; Garfinkel A; Weiss JN; Qu Z
    Biophys J; 2007 Jan; 92(2):448-60. PubMed ID: 17071663
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Control of electrical alternans in canine cardiac purkinje fibers.
    Christini DJ; Riccio ML; Culianu CA; Fox JJ; Karma A; Gilmour RF
    Phys Rev Lett; 2006 Mar; 96(10):104101. PubMed ID: 16605736
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Tissue discontinuities affect conduction velocity restitution: a mechanism by which structural barriers may promote wave break.
    Derksen R; van Rijen HV; Wilders R; Tasseron S; Hauer RN; Rutten WL; de Bakker JM
    Circulation; 2003 Aug; 108(7):882-8. PubMed ID: 12860907
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Interactions between Activation and Repolarization Restitution Properties in the Intact Human Heart: In-Vivo Whole-Heart Data and Mathematical Description.
    Orini M; Taggart P; Srinivasan N; Hayward M; Lambiase PD
    PLoS One; 2016; 11(9):e0161765. PubMed ID: 27588688
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Feedback-control induced pattern formation in cardiac myocytes: a mathematical modeling study.
    Gaeta SA; Krogh-Madsen T; Christini DJ
    J Theor Biol; 2010 Oct; 266(3):408-18. PubMed ID: 20620154
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Condition for alternans and its control in a two-dimensional mapping model of paced cardiac dynamics.
    Tolkacheva EG; Romeo MM; Guerraty M; Gauthier DJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031904. PubMed ID: 15089319
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Restitution analysis of alternans using dynamic pacing and its comparison with S1S2 restitution in heptanol-treated, hypokalaemic Langendorff-perfused mouse hearts.
    Tse G; Wong ST; Tse V; Yeo JM
    Biomed Rep; 2016 Jun; 4(6):673-680. PubMed ID: 27284405
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Controlling alternans in cardiac cells.
    Li M; Otani NF
    Ann Biomed Eng; 2004 Jun; 32(6):784-92. PubMed ID: 15255209
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Structural heterogeneity alone is a sufficient substrate for dynamic instability and altered restitution.
    Engelman ZJ; Trew ML; Smaill BH
    Circ Arrhythm Electrophysiol; 2010 Apr; 3(2):195-203. PubMed ID: 20133934
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Spatial heterogeneity of action potential alternans during global ischemia in the rabbit heart.
    Qian YW; Sung RJ; Lin SF; Province R; Clusin WT
    Am J Physiol Heart Circ Physiol; 2003 Dec; 285(6):H2722-33. PubMed ID: 12907420
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Discordant Alternans as a Mechanism for Initiation of Ventricular Fibrillation In Vitro.
    Muñoz LM; Gelzer ARM; Fenton FH; Qian W; Lin W; Gilmour RF; Otani NF
    J Am Heart Assoc; 2018 Sep; 7(17):e007898. PubMed ID: 30371176
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Models for mechanistic investigations of pacing arrthymogenesis and cardiac tissue structure.
    Engelman ZJ; Trew ML; Smaill BH
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5914-7. PubMed ID: 19164064
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [Study of cellular electrophysiology based on Noble98 dynamic model of ventricular action potential].
    Zhang H; Yang L; Jin Y; Zhang Z; Huang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Feb; 23(1):6-10. PubMed ID: 16532798
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Sarcoplasmic reticulum calcium content fluctuation is the key to cardiac alternans.
    Díaz ME; O'Neill SC; Eisner DA
    Circ Res; 2004 Mar; 94(5):650-6. PubMed ID: 14752033
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Comparative study of cardiac alternans of action potential duration in hypothermia in rabbits and ground squirrels].
    Egorov IuV; Glukhov AV; Artiukhov VS; Efimov IR; Rozenshtraukh LV
    Ross Fiziol Zh Im I M Sechenova; 2009 May; 95(5):532-42. PubMed ID: 19569529
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Electrophysiology of Heart Failure Using a Rabbit Model: From the Failing Myocyte to Ventricular Fibrillation.
    Ponnaluri AV; Perotti LE; Liu M; Qu Z; Weiss JN; Ennis DB; Klug WS; Garfinkel A
    PLoS Comput Biol; 2016 Jun; 12(6):e1004968. PubMed ID: 27336310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.