BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 20371323)

  • 61. Effect of inorganic phosphate on the force and number of myosin cross-bridges during the isometric contraction of permeabilized muscle fibers from rabbit psoas.
    Caremani M; Dantzig J; Goldman YE; Lombardi V; Linari M
    Biophys J; 2008 Dec; 95(12):5798-808. PubMed ID: 18835889
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Force recovery after activated shortening in whole skeletal muscle: transient and steady-state aspects of force depression.
    Corr DT; Herzog W
    J Appl Physiol (1985); 2005 Jul; 99(1):252-60. PubMed ID: 15746298
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Energy economy in the actomyosin interaction: lessons from simple models.
    Lehman SL
    Adv Exp Med Biol; 2010; 682():41-55. PubMed ID: 20824519
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Kinetic mechanism of non-muscle myosin IIB: functional adaptations for tension generation and maintenance.
    Wang F; Kovacs M; Hu A; Limouze J; Harvey EV; Sellers JR
    J Biol Chem; 2003 Jul; 278(30):27439-48. PubMed ID: 12704189
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Force and power generating mechanism(s) in active muscle as revealed from temperature perturbation studies.
    Ranatunga KW
    J Physiol; 2010 Oct; 588(Pt 19):3657-70. PubMed ID: 20660565
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Comparison of the tension responses to ramp shortening and lengthening in intact mammalian muscle fibres: crossbridge and non-crossbridge contributions.
    Roots H; Offer GW; Ranatunga KW
    J Muscle Res Cell Motil; 2007; 28(2-3):123-39. PubMed ID: 17610136
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Depletion of phosphate in active muscle fibers probes actomyosin states within the powerstroke.
    Pate E; Franks-Skiba K; Cooke R
    Biophys J; 1998 Jan; 74(1):369-80. PubMed ID: 9449337
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Peak power output is maintained in rabbit psoas and rat soleus single muscle fibers when CTP replaces ATP.
    Wahr PA; Metzger JM
    J Appl Physiol (1985); 1998 Jul; 85(1):76-83. PubMed ID: 9655758
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mechanochemical coupling of two substeps in a single myosin V motor.
    Uemura S; Higuchi H; Olivares AO; De La Cruz EM; Ishiwata S
    Nat Struct Mol Biol; 2004 Sep; 11(9):877-83. PubMed ID: 15286720
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Power-stroke-driven actomyosin contractility.
    Sheshka R; Truskinovsky L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012708. PubMed ID: 24580258
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Magnesium, ADP, and actin binding linkage of myosin V: evidence for multiple myosin V-ADP and actomyosin V-ADP states.
    Hannemann DE; Cao W; Olivares AO; Robblee JP; De La Cruz EM
    Biochemistry; 2005 Jun; 44(24):8826-40. PubMed ID: 15952789
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Dissecting the free energy of formation of the 1:1 actomyosin complex.
    Grazi E; Adami R; Cintio O; Cuneo P; Magri E; Trombetta G
    Biophys Chem; 2001 Feb; 89(2-3):181-91. PubMed ID: 11254211
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effects of cross-bridge compliance on the force-velocity relationship and muscle power output.
    Fenwick AJ; Wood AM; Tanner BCW
    PLoS One; 2017; 12(12):e0190335. PubMed ID: 29284062
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Structural coupling of troponin C and actomyosin in muscle fibers.
    Li HC; Fajer PG
    Biochemistry; 1998 May; 37(19):6628-35. PubMed ID: 9578546
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Force generated by actomyosin contraction builds bridges between adhesive contacts.
    Rossier OM; Gauthier N; Biais N; Vonnegut W; Fardin MA; Avigan P; Heller ER; Mathur A; Ghassemi S; Koeckert MS; Hone JC; Sheetz MP
    EMBO J; 2010 Mar; 29(6):1055-68. PubMed ID: 20150894
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Millisecond-scale biochemical response to change in strain.
    Bickham DC; West TG; Webb MR; Woledge RC; Curtin NA; Ferenczi MA
    Biophys J; 2011 Nov; 101(10):2445-54. PubMed ID: 22098743
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Dynamics of the nucleotide pocket of myosin measured by spin-labeled nucleotides.
    Naber N; Purcell TJ; Pate E; Cooke R
    Biophys J; 2007 Jan; 92(1):172-84. PubMed ID: 17028139
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Induced potential model of muscular contraction mechanism and myosin molecular structure.
    Mitsui T
    Adv Biophys; 1999; 36():107-58. PubMed ID: 10463074
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Physiological Significance of the Force-Velocity Relation in Skeletal Muscle and Muscle Fibers.
    Sugi H; Ohno T
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31238505
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Myosin heavy chain isoform expression regulates shortening velocity in smooth muscle: studies using an SMB KO mouse line.
    Karagiannis P; Babu GJ; Periasamy M; Brozovich FV
    J Muscle Res Cell Motil; 2004; 25(2):149-58. PubMed ID: 15360130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.