These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 2037201)
1. Elevation of volatile fatty acid levels and adjustment of acetate/propionate ratios during ruminal fermentation of various feedstuffs with the high strength yeast culture, Yea-Sacc1026. Ryan JP; Gray WR Biochem Soc Trans; 1991 Feb; 19(1):72S. PubMed ID: 2037201 [No Abstract] [Full Text] [Related]
2. Two distinct modes of action, namely ab initio and ad finem, of the yeast culture Yea-Sacc on ruminal fermentation in sheep. Gray WR; Ryan JP Biochem Soc Trans; 1990 Apr; 18(2):349-50. PubMed ID: 2199276 [No Abstract] [Full Text] [Related]
3. Molecular hydrogen generated by elemental magnesium supplementation alters rumen fermentation and microbiota in goats. Wang M; Wang R; Zhang X; Ungerfeld EM; Long D; Mao H; Jiao J; Beauchemin KA; Tan Z Br J Nutr; 2017 Sep; 118(6):401-410. PubMed ID: 28927478 [TBL] [Abstract][Full Text] [Related]
4. In vitro methane emission and acetate:propionate ratio are decreased when artificial stimulation of the rumen wall is combined with increasing grain diets in sheep. Christophersen CT; Wright AD; Vercoe PE J Anim Sci; 2008 Feb; 86(2):384-9. PubMed ID: 18042816 [TBL] [Abstract][Full Text] [Related]
5. The effect of altering dilution rate on the pattern of fermentation in the rumen. Thompson DJ; Beever DE; Mundell DC; Elderfield ML; Harrison DG Proc Nutr Soc; 1975 Dec; 34(3):111A-112A. PubMed ID: 1208483 [No Abstract] [Full Text] [Related]
6. Effects of forage source and forage particle size as a free-choice provision on growth performance, rumen fermentation, and behavior of dairy calves fed texturized starters. Omidi-Mirzaei H; Azarfar A; Mirzaei M; Kiani A; Ghaffari MH J Dairy Sci; 2018 May; 101(5):4143-4157. PubMed ID: 29477531 [TBL] [Abstract][Full Text] [Related]
7. Effect of high-dose nano-selenium and selenium-yeast on feed digestibility, rumen fermentation, and purine derivatives in sheep. Xun W; Shi L; Yue W; Zhang C; Ren Y; Liu Q Biol Trace Elem Res; 2012 Dec; 150(1-3):130-6. PubMed ID: 22692882 [TBL] [Abstract][Full Text] [Related]
8. Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep. Martínez-Fernández G; Abecia L; Arco A; Cantalapiedra-Hijar G; Martín-García AI; Molina-Alcaide E; Kindermann M; Duval S; Yáñez-Ruiz DR J Dairy Sci; 2014; 97(6):3790-9. PubMed ID: 24731636 [TBL] [Abstract][Full Text] [Related]
9. Portal recovery of short-chain fatty acids infused into the temporarily-isolated and washed reticulo-rumen of sheep. Kristensen NB; Gäbel G; Pierzynowski SG; Danfaer A Br J Nutr; 2000 Oct; 84(4):477-82. PubMed ID: 11103218 [TBL] [Abstract][Full Text] [Related]
10. The use of pivalic acid as a reference substance in measurements of production of volatile fatty acids by rumen micro-organisms in vitro. Czerkawski JW Br J Nutr; 1976 Sep; 36(2):311-5. PubMed ID: 952843 [TBL] [Abstract][Full Text] [Related]
11. The effects of a garlic oil chemical compound, propyl-propane thiosulfonate, on ruminal fermentation and fatty acid outflow in a dual-flow continuous culture system. Foskolos A; Siurana A; Rodriquez-Prado M; Ferret A; Bravo D; Calsamiglia S J Dairy Sci; 2015 Aug; 98(8):5482-91. PubMed ID: 26004834 [TBL] [Abstract][Full Text] [Related]
12. Effects of cellobiose and monensin on in vitro fermentation of organic acids by mixed ruminal bacteria. Callaway TR; Martin SA J Dairy Sci; 1997 Jun; 80(6):1126-35. PubMed ID: 9201583 [TBL] [Abstract][Full Text] [Related]
13. Effect of pectinase on rumen fermentation in sheep and lambs. Baran M; Kmet V Arch Tierernahr; 1987; 37(7-8):643-9. PubMed ID: 3689147 [TBL] [Abstract][Full Text] [Related]
14. Production and metabolism of volatile fatty acids, glucose and CO2 in steers and the effects of monensin on volatile fatty acid kinetics. Armentano LE; Young JW J Nutr; 1983 Jun; 113(6):1265-77. PubMed ID: 6406652 [TBL] [Abstract][Full Text] [Related]
15. Effects of partial mixed rations and supplement amounts on milk production and composition, ruminal fermentation, bacterial communities, and ruminal acidosis. Golder HM; Denman SE; McSweeney C; Wales WJ; Auldist MJ; Wright MM; Marett LC; Greenwood JS; Hannah MC; Celi P; Bramley E; Lean IJ J Dairy Sci; 2014 Sep; 97(9):5763-85. PubMed ID: 24997657 [TBL] [Abstract][Full Text] [Related]
16. Effects of a Saccharomyces cerevisiae culture on in vitro mixed ruminal microorganism fermentation. Sullivan HM; Martin SA J Dairy Sci; 1999 Sep; 82(9):2011-6. PubMed ID: 10509261 [TBL] [Abstract][Full Text] [Related]
17. Comparison of techniques to determine the clearance of ruminal volatile fatty acids. Resende Júnior JC; Pereira MN; Bôer H; Tamminga S J Dairy Sci; 2006 Aug; 89(8):3096-106. PubMed ID: 16840627 [TBL] [Abstract][Full Text] [Related]
18. Differences in rumen fermentation characteristics between low-yield and high-yield dairy cows in early lactation. Sofyan A; Mitsumori M; Ohmori H; Uyeno Y; Hasunuma T; Akiyama K; Yamamoto H; Yokokawa H; Yamaguchi T; Shinkai T; Hirako M; Kushibiki S Anim Sci J; 2017 Jul; 88(7):974-982. PubMed ID: 27878924 [TBL] [Abstract][Full Text] [Related]
19. Relationship between ammonia and volatile fatty acid levels in the rumen of fasting sheep. Zelenák I; Várady J; Boda K; Havassy I Physiol Bohemoslov; 1972; 21(5):531-7. PubMed ID: 4266222 [No Abstract] [Full Text] [Related]
20. Effects of the inclusion of yeast culture (Saccharomyces cerevisiae plus growth medium) in the diet of dairy cows on milk yield and forage degradation and fermentation patterns in the rumen of steers. Williams PE; Tait CA; Innes GM; Newbold CJ J Anim Sci; 1991 Jul; 69(7):3016-26. PubMed ID: 1885411 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]