These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 20372584)

  • 1. Exposed-core microstructured optical fibers for real-time fluorescence sensing.
    Warren-Smith SC; Ebendorff-Heidepriem H; Foo TC; Moore R; Davis C; Monro TM
    Opt Express; 2009 Oct; 17(21):18533-42. PubMed ID: 20372584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber.
    Warren-Smith SC; Heng S; Ebendorff-Heidepriem H; Abell AD; Monro TM
    Langmuir; 2011 May; 27(9):5680-5. PubMed ID: 21469740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of the fluorescence sensing performance of microstructured optical fibers compared to multi-mode fiber tips.
    Schartner EP; Tsiminis G; Henderson MR; Warren-Smith SC; Monro TM
    Opt Express; 2016 Aug; 24(16):18541-50. PubMed ID: 27505817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance.
    Rozé M; Ung B; Mazhorova A; Walther M; Skorobogatiy M
    Opt Express; 2011 May; 19(10):9127-38. PubMed ID: 21643167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence-based sensing with optical nanowires: a generalized model and experimental validation.
    Warren-Smith SC; Afshar S; Monro TM
    Opt Express; 2010 Apr; 18(9):9474-85. PubMed ID: 20588793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescent response of dye-filled suspended-core microstructured polymer optical fiber.
    Vanda J; Skapa J; Vasinek V; Argyros A; Large M; Lwin R
    Appl Opt; 2009 Nov; 48(31):G64-7. PubMed ID: 19881649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Casting method for producing low-loss chalcogenide microstructured optical fibers.
    Coulombier Q; Brilland L; Houizot P; Chartier T; N'guyen TN; Smektala F; Renversez G; Monteville A; Méchin D; Pain T; Orain H; Sangleboeuf JC; Trolès J
    Opt Express; 2010 Apr; 18(9):9107-12. PubMed ID: 20588758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers.
    El-Amraoui M; Fatome J; Jules JC; Kibler B; Gadret G; Fortier C; Smektala F; Skripatchev I; Polacchini CF; Messaddeq Y; Troles J; Brilland L; Szpulak M; Renversez G
    Opt Express; 2010 Mar; 18(5):4547-56. PubMed ID: 20389467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Planar fiber-optic chips for broadband spectroscopic interrogation of thin films.
    Beam BM; Shallcross RC; Jang J; Armstrong NR; Mendes SB
    Appl Spectrosc; 2007 Jun; 61(6):585-92. PubMed ID: 17650368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructured Optical Fiber-based Biosensors: Reversible and Nanoliter-Scale Measurement of Zinc Ions.
    Heng S; McDevitt CA; Kostecki R; Morey JR; Eijkelkamp BA; Ebendorff-Heidepriem H; Monro TM; Abell AD
    ACS Appl Mater Interfaces; 2016 May; 8(20):12727-32. PubMed ID: 27152578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature sensing up to 1300°C using suspended-core microstructured optical fibers.
    Warren-Smith SC; Nguyen LV; Lang C; Ebendorff-Heidepriem H; Monro TM
    Opt Express; 2016 Feb; 24(4):3714-9. PubMed ID: 26907027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large mode area silicon microstructured fiber with robust dual mode guidance.
    Healy N; Sparks JR; Petrovich MN; Sazio PJ; Badding JV; Peacock AC
    Opt Express; 2009 Sep; 17(20):18076-82. PubMed ID: 19907597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lanthanide upconversion within microstructured optical fibers: improved detection limits for sensing and the demonstration of a new tool for nanocrystal characterization.
    Schartner EP; Jin D; Ebendorff-Heidepriem H; Piper JA; Lu Z; Monro TM
    Nanoscale; 2012 Dec; 4(23):7448-51. PubMed ID: 23086019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic-resonance evaluation of the suitability of microstructured polymer optical fibers as sensors for ionic aqueous solutions.
    Cox FM; Momot KI; Kuchel PW
    ACS Appl Mater Interfaces; 2009 Jan; 1(1):197-203. PubMed ID: 20355772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast femtosecond-laser-induced fiber Bragg gratings in air-hole microstructured fibers for high-temperature pressure sensing.
    Jewart CM; Wang Q; Canning J; Grobnic D; Mihailov SJ; Chen KP
    Opt Lett; 2010 May; 35(9):1443-5. PubMed ID: 20436597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct core structuring of microstructured optical fibers using focused ion beam milling.
    Warren-Smith SC; André RM; Perrella C; Dellith J; Bartelt H
    Opt Express; 2016 Jan; 24(1):378-87. PubMed ID: 26832268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microfluidic refractometric sensor based on gratings in optical fibre microwires.
    Xu F; Brambilla G; Lu Y
    Opt Express; 2009 Nov; 17(23):20866-71. PubMed ID: 19997322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical analysis of directional coupling in dual-core microstructured optical fibers.
    Di Bin P; Mothe N
    Opt Express; 2009 Aug; 17(18):15778-89. PubMed ID: 19724578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of optical tips from photonic crystal fibers.
    Carlson CA; Woehl JC
    Rev Sci Instrum; 2008 Oct; 79(10):103707. PubMed ID: 19044719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An evanescent wave biosensor--Part II: Fluorescent signal acquisition from tapered fiber optic probes.
    Golden JP; Anderson GP; Rabbany SY; Ligler FS
    IEEE Trans Biomed Eng; 1994 Jun; 41(6):585-91. PubMed ID: 7927378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.