These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 20372586)

  • 1. Plasmonic array nanoantennas on layered substrates: modeling and radiation characteristics.
    Ghadarghadr S; Hao Z; Mosallaei H
    Opt Express; 2009 Oct; 17(21):18556-70. PubMed ID: 20372586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of large array of plasmonic nanoparticles on layered substrate: dipole mode analysis integrated with complex image method.
    Tajdini MM; Mosallaei H
    Opt Express; 2011 Mar; 19 Suppl 2():A173-93. PubMed ID: 21445219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An optical reflectarray nanoantenna: the concept and design.
    Ahmadi A; Ghadarghadr S; Mosallaei H
    Opt Express; 2010 Jan; 18(1):123-33. PubMed ID: 20173831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computing the far field scattered or radiated by objects inside layered fluid media using approximate Green's functions.
    Zampolli M; Tesei A; Canepa G; Godin OA
    J Acoust Soc Am; 2008 Jun; 123(6):4051-8. PubMed ID: 18537357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on spontaneous emission in complex multilayered plasmonic system via surface integral equation approach with layered medium Green's function.
    Chen YP; Sha WE; Choy WC; Jiang L; Chew WC
    Opt Express; 2012 Aug; 20(18):20210-21. PubMed ID: 23037073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Full analytical model for obtaining surface plasmon resonance modes of metal nanoparticle structures embedded in layered media.
    Simsek E
    Opt Express; 2010 Jan; 18(2):1722-33. PubMed ID: 20174000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Demonstration of scattering suppression in retardation-based plasmonic nanoantennas.
    Nielsen MG; Pors A; Nielsen RB; Boltasseva A; Albrektsen O; Bozhevolnyi SI
    Opt Express; 2010 Jul; 18(14):14802-11. PubMed ID: 20639967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpretation of single-particle negative polarization at intermediate scattering angles.
    Tyynelä J; Zubko E; Muinonen K; Videen G
    Appl Opt; 2010 Oct; 49(28):5284-96. PubMed ID: 20885464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. General finite-difference time-domain solution of an arbitrary electromagnetic source interaction with an arbitrary dielectric surface.
    Sun W; Pan H; Videen G
    Appl Opt; 2009 Nov; 48(31):6015-25. PubMed ID: 19881669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wave based analysis of the Green's function for a layered cylindrical shell.
    Magliula EA; McDaniel JG
    J Acoust Soc Am; 2012 Jul; 132(1):173-9. PubMed ID: 22779466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoengineering and characterization of gold dipole nanoantennas with enhanced integrated scattering properties.
    Wissert MD; Schell AW; Ilin KS; Siegel M; Eisler HJ
    Nanotechnology; 2009 Oct; 20(42):425203. PubMed ID: 19779233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep subwavelength spatial characterization of angular emission from single-crystal Au plasmonic ridge nanoantennas.
    Coenen T; Vesseur EJ; Polman A
    ACS Nano; 2012 Feb; 6(2):1742-50. PubMed ID: 22230686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite difference time domain (FDTD) analysis of optical pulse responses in biological tissues for spectroscopic diffused optical tomography.
    Tanifuji T; Hijikata M
    IEEE Trans Med Imaging; 2002 Feb; 21(2):181-4. PubMed ID: 11929105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An implanted spherical head model exposed to electromagnetic fields at a mobile communication frequency.
    Reyhani SM; Ludwig SA
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):2092-101. PubMed ID: 17019874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tailoring unidirectional angular radiation through multipolar interference in a single-element subwavelength all-dielectric stair-like nanoantenna.
    Tian J; Li Q; Yang Y; Qiu M
    Nanoscale; 2016 Feb; 8(7):4047-53. PubMed ID: 26817668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks.
    Staude I; Miroshnichenko AE; Decker M; Fofang NT; Liu S; Gonzales E; Dominguez J; Luk TS; Neshev DN; Brener I; Kivshar Y
    ACS Nano; 2013 Sep; 7(9):7824-32. PubMed ID: 23952969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface enhanced Raman optical activity of molecules on orientationally averaged substrates: theory of electromagnetic effects.
    Janesko BG; Scuseria GE
    J Chem Phys; 2006 Sep; 125(12):124704. PubMed ID: 17014197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution 2D plasmonic fan-out realized by subwavelength slit arrays.
    Wang Q; Bu J; Yuan XC
    Opt Express; 2010 Feb; 18(3):2662-7. PubMed ID: 20174096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Full-wave electromagentic analysis of a plasmonic nanoparticle separated from a plasmonic film by a thin spacer layer.
    Trivedi R; Thomas A; Dhawan A
    Opt Express; 2014 Aug; 22(17):19970-89. PubMed ID: 25321207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boosting Fano resonances in single layered concentric core-shell particles.
    Sancho-Parramon J; Jelovina D
    Nanoscale; 2014 Nov; 6(22):13555-64. PubMed ID: 25269097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.