These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 20372640)
1. Depth-extended integral imaging system based on a birefringence lens array providing polarization switchable focal lengths. Park CK; Lee SS; Hwang YS Opt Express; 2009 Oct; 17(21):19047-54. PubMed ID: 20372640 [TBL] [Abstract][Full Text] [Related]
2. Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens. Wang YJ; Shen X; Lin YH; Javidi B Opt Lett; 2015 Aug; 40(15):3564-7. PubMed ID: 26258358 [TBL] [Abstract][Full Text] [Related]
3. Liquid crystal-based square lens array with tunable focal length. Kim J; Kim J; Na JH; Lee B; Lee SD Opt Express; 2014 Feb; 22(3):3316-24. PubMed ID: 24663622 [TBL] [Abstract][Full Text] [Related]
4. Experimental study on polarization lens formed by asymmetrical metallic hole array. Yin S; Dong X; Wei X; Deng Q; Shi L; Pan Y; Du C Appl Opt; 2011 Nov; 50(31):G118-22. PubMed ID: 22086035 [TBL] [Abstract][Full Text] [Related]
5. Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens. Shen X; Wang YJ; Chen HS; Xiao X; Lin YH; Javidi B Opt Lett; 2015 Feb; 40(4):538-41. PubMed ID: 25680144 [TBL] [Abstract][Full Text] [Related]
6. Enhancement of the depth-of-field of integral imaging microscope by using switchable bifocal liquid-crystalline polymer micro lens array. Kwon KC; Erdenebat MU; Lim YT; Joo KI; Park MK; Park H; Jeong JR; Kim HR; Kim N Opt Express; 2017 Nov; 25(24):30503-30512. PubMed ID: 29221078 [TBL] [Abstract][Full Text] [Related]
8. Three-dimensional imaging with axially distributed sensing using electronically controlled liquid crystal lens. Chen CW; Cho M; Huang YP; Javidi B Opt Lett; 2012 Oct; 37(19):4125-7. PubMed ID: 23027300 [TBL] [Abstract][Full Text] [Related]
9. Integral imaging system using a dual-mode technique. Kim Y; Park SG; Min SW; Lee B Appl Opt; 2009 Dec; 48(34):H71-6. PubMed ID: 19956304 [TBL] [Abstract][Full Text] [Related]
14. Measuring optical properties of an eye lens using magnetic resonance imaging. Jones CE; Pope JM Magn Reson Imaging; 2004 Feb; 22(2):211-20. PubMed ID: 15010113 [TBL] [Abstract][Full Text] [Related]
15. Optical implementation of micro-zoom arrays for parallel focusing in integral imaging. Tolosa A; MartÃnez-Cuenca R; Pons A; Saavedra G; MartÃnez-Corral M; Javidi B J Opt Soc Am A Opt Image Sci Vis; 2010 Mar; 27(3):495-500. PubMed ID: 20208940 [TBL] [Abstract][Full Text] [Related]
16. Integral three-dimensional image capture equipment with closely positioned lens array and image sensor. Arai J; Yamashita T; Miura M; Hiura H; Okaichi N; Okano F; Funatsu R Opt Lett; 2013 Jun; 38(12):2044-6. PubMed ID: 23938971 [TBL] [Abstract][Full Text] [Related]
17. Adaptive liquid crystal lens with large focal length tunability. Ren H; Wu ST Opt Express; 2006 Nov; 14(23):11292-8. PubMed ID: 19529544 [TBL] [Abstract][Full Text] [Related]
18. Polymer-stabilized liquid crystal microlens array with large dynamic range and fast response time. Ren H; Xu S; Wu ST Opt Lett; 2013 Aug; 38(16):3144-7. PubMed ID: 24104671 [TBL] [Abstract][Full Text] [Related]
19. Depth plane adaptive integral imaging system using a vari-focal liquid lens array for realizing augmented reality. Shin D; Kim C; Koo G; Hyub Won Y Opt Express; 2020 Feb; 28(4):5602-5616. PubMed ID: 32121777 [TBL] [Abstract][Full Text] [Related]