These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 20372731)

  • 1. Rules and trends of metal cation driven hydride-transfer mechanisms in metal amidoboranes.
    Kim DY; Lee HM; Seo J; Shin SK; Kim KS
    Phys Chem Chem Phys; 2010; 12(20):5446-53. PubMed ID: 20372731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen-release mechanisms in lithium amidoboranes.
    Kim DY; Singh NJ; Lee HM; Kim KS
    Chemistry; 2009; 15(22):5598-604. PubMed ID: 19370741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dehydrogenation mechanisms and thermodynamics of MNH2BH3 (M=Li, Na) metal amidoboranes as predicted from first principles.
    Shevlin SA; Kerkeni B; Guo ZX
    Phys Chem Chem Phys; 2011 May; 13(17):7649-59. PubMed ID: 21336360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen release studies of alkali metal amidoboranes.
    Luedtke AT; Autrey T
    Inorg Chem; 2010 Apr; 49(8):3905-10. PubMed ID: 20232793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical investigations on the formation and dehydrogenation reaction pathways of H(NH2BH2)(n)H (n = 1-4) oligomers: importance of dihydrogen interactions.
    Li J; Kathmann SM; Hu HS; Schenter GK; Autrey T; Gutowski M
    Inorg Chem; 2010 Sep; 49(17):7710-20. PubMed ID: 20701247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-capacity hydrogen storage in lithium and sodium amidoboranes.
    Xiong Z; Yong CK; Wu G; Chen P; Shaw W; Karkamkar A; Autrey T; Jones MO; Johnson SR; Edwards PP; David WI
    Nat Mater; 2008 Feb; 7(2):138-41. PubMed ID: 18157135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards understanding a mechanism for reversible hydrogen storage: theoretical study of transition metal catalysed dehydrogenation of sodium alanate.
    Ljubić I; Clary DC
    Phys Chem Chem Phys; 2010 Apr; 12(16):4012-23. PubMed ID: 20379493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal amidoboranes: superior double-hydrogen-transfer agents in the reduction of ketones and imines.
    Xu W; Wu G; Yao W; Fan H; Wu J; Chen P
    Chemistry; 2012 Oct; 18(43):13885-92. PubMed ID: 22991259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen elimination from a hydroxycyclopentadienyl ruthenium(II) hydride: study of hydrogen activation in a ligand-metal bifunctional hydrogenation catalyst.
    Casey CP; Johnson JB; Singer SW; Cui Q
    J Am Chem Soc; 2005 Mar; 127(9):3100-9. PubMed ID: 15740149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and reactivity of bis(silyl) dihydride complexes (PMe(3))(3)Ru(SiR(3))(2)(H)(2): model compounds and real intermediates in a dehydrogenative C-Si bond forming reaction.
    Dioumaev VK; Yoo BR; Procopio LJ; Carroll PJ; Berry DH
    J Am Chem Soc; 2003 Jul; 125(29):8936-48. PubMed ID: 12862491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic investigation on the formation and dehydrogenation of calcium amidoborane ammoniate.
    Chua YS; Li W; Shaw WJ; Wu G; Autrey T; Xiong Z; Wong MW; Chen P
    ChemSusChem; 2012 May; 5(5):927-31. PubMed ID: 22290865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First investigation of non-classical dihydrogen bonding between an early transition-metal hydride and alcohols: IR, NMR, and DFT approach.
    Bakhmutova EV; Bakhmutov VI; Belkova NV; Besora M; Epstein LM; Lledós A; Nikonov GI; Shubina ES; Tomàs J; Vorontsov EV
    Chemistry; 2004 Feb; 10(3):661-71. PubMed ID: 14767930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into dehydrogenative coupling of alcohols and amines catalyzed by a (PNN)-Ru(II) hydride complex: unusual metal-ligand cooperation.
    Zeng G; Li S
    Inorg Chem; 2011 Nov; 50(21):10572-80. PubMed ID: 21942421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the Compound I-like reactivity of a bare high-valent oxo iron porphyrin complex: the oxidation of tertiary amines.
    Chiavarino B; Cipollini R; Crestoni ME; Fornarini S; Lanucara F; Lapi A
    J Am Chem Soc; 2008 Mar; 130(10):3208-17. PubMed ID: 18278912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homopolar dihydrogen bonding in alkali-metal amidoboranes and its implications for hydrogen storage.
    Wolstenholme DJ; Titah JT; Che FN; Traboulsee KT; Flogeras J; McGrady GS
    J Am Chem Soc; 2011 Oct; 133(41):16598-604. PubMed ID: 21859070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can hydridic-to-protonic hydrogen bonds catalyze hydride transfers in biological systems?
    Marincean S; Jackson JE
    J Phys Chem A; 2010 Dec; 114(51):13376-80. PubMed ID: 21141894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alkali and alkaline-earth metal amidoboranes: structure, crystal chemistry, and hydrogen storage properties.
    Wu H; Zhou W; Yildirim T
    J Am Chem Soc; 2008 Nov; 130(44):14834-9. PubMed ID: 18847204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon-carbon bond activation of 2,2,6,6-tetramethyl-piperidine-1-oxyl by a Rh(II) metalloradical: a combined experimental and theoretical study.
    Chan KS; Li XZ; Dzik WI; de Bruin B
    J Am Chem Soc; 2008 Feb; 130(6):2051-61. PubMed ID: 18205361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydride-shuttling chain-transfer polymerization of methacrylates catalyzed by metallocenium enolate metallacycle-hydridoborate ion pairs.
    Zhang Y; Caporaso L; Cavallo L; Chen EY
    J Am Chem Soc; 2011 Feb; 133(5):1572-88. PubMed ID: 21210691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the origin of reversible hydrogen activation by phosphine-boranes.
    Rajeev R; Sunoj RB
    Chemistry; 2009 Nov; 15(46):12846-55. PubMed ID: 19839016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.