BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 20372791)

  • 1. Mapping of the interaction sites between Wee1 kinase and the regulatory beta-subunit of protein kinase CK2.
    Olsen BB; Kreutzer JN; Watanabe N; Holm T; Guerra B
    Int J Oncol; 2010 May; 36(5):1175-82. PubMed ID: 20372791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The regulatory beta-subunit of protein kinase CK2 regulates cell-cycle progression at the onset of mitosis.
    Yde CW; Olsen BB; Meek D; Watanabe N; Guerra B
    Oncogene; 2008 Aug; 27(37):4986-97. PubMed ID: 18469858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ability of CK2beta to selectively regulate cellular protein kinases.
    Olsen BB; Guerra B
    Mol Cell Biochem; 2008 Sep; 316(1-2):115-26. PubMed ID: 18560763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclin-dependent kinase (CDK) phosphorylation destabilizes somatic Wee1 via multiple pathways.
    Watanabe N; Arai H; Iwasaki J; Shiina M; Ogata K; Hunter T; Osada H
    Proc Natl Acad Sci U S A; 2005 Aug; 102(33):11663-8. PubMed ID: 16085715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The multiple personalities of the regulatory subunit of protein kinase CK2: CK2 dependent and CK2 independent roles reveal a secret identity for CK2beta.
    Bibby AC; Litchfield DW
    Int J Biol Sci; 2005; 1(2):67-79. PubMed ID: 15951851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of 14-3-3beta to the carboxyl terminus of Wee1 increases Wee1 stability, kinase activity, and G2-M cell population.
    Wang Y; Jacobs C; Hook KE; Duan H; Booher RN; Sun Y
    Cell Growth Differ; 2000 Apr; 11(4):211-9. PubMed ID: 10775038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation domain-dependent degradation of somatic Wee1 kinase.
    Owens L; Simanski S; Squire C; Smith A; Cartzendafner J; Cavett V; Caldwell Busby J; Sato T; Ayad NG
    J Biol Chem; 2010 Feb; 285(9):6761-9. PubMed ID: 20038582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation of the regulatory beta-subunit of protein kinase CK2 by checkpoint kinase Chk1: identification of the in vitro CK2beta phosphorylation site.
    Kristensen LP; Larsen MR; Højrup P; Issinger OG; Guerra B
    FEBS Lett; 2004 Jul; 569(1-3):217-23. PubMed ID: 15225637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GSK3 inhibitors stabilize Wee1 and reduce cerebellar granule cell progenitor proliferation.
    Penas C; Mishra JK; Wood SD; Schürer SC; Roush WR; Ayad NG
    Cell Cycle; 2015; 14(3):417-24. PubMed ID: 25616418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human immunodeficiency virus type 1 Vpr binds to the N lobe of the Wee1 kinase domain and enhances kinase activity for CDC2.
    Kamata M; Watanabe N; Nagaoka Y; Chen IS
    J Virol; 2008 Jun; 82(12):5672-82. PubMed ID: 18385244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 'regulatory' beta-subunit of protein kinase CK2 negatively influences p53-mediated allosteric effects on Chk2 activation.
    Bjørling-Poulsen M; Siehler S; Wiesmüller L; Meek D; Niefind K; Issinger OG
    Oncogene; 2005 Sep; 24(40):6194-200. PubMed ID: 15940255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 14-3-3 binding regulates catalytic activity of human Wee1 kinase.
    Rothblum-Oviatt CJ; Ryan CE; Piwnica-Worms H
    Cell Growth Differ; 2001 Dec; 12(12):581-9. PubMed ID: 11751453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of human checkpoint kinase Chk1 by the regulatory beta-subunit of protein kinase CK2.
    Guerra B; Issinger OG; Wang JY
    Oncogene; 2003 Aug; 22(32):4933-42. PubMed ID: 12902976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role for Wee1 in inhibition of G2-to-M transition through the cooperation of distinct human papillomavirus type 1 E4 proteins.
    Knight GL; Turnell AS; Roberts S
    J Virol; 2006 Aug; 80(15):7416-26. PubMed ID: 16840322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [WEE1, histone and tumor].
    Liu B
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2015 Jul; 40(7):806-10. PubMed ID: 26267696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory phosphorylation of a mitotic cyclin-dependent kinase regulates the morphogenesis, cell size and virulence of the smut fungus Ustilago maydis.
    Sgarlata C; Pérez-Martín J
    J Cell Sci; 2005 Aug; 118(Pt 16):3607-22. PubMed ID: 16046476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. C/EBPβ Is a Transcriptional Regulator of Wee1 at the G₂/M Phase of the Cell Cycle.
    Lee JH; Sung JY; Choi EK; Yoon HK; Kang BR; Hong EK; Park BK; Kim YN; Rho SB; Yoon K
    Cells; 2019 Feb; 8(2):. PubMed ID: 30754676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HIV-1 Vpr induces cell cycle G2 arrest in fission yeast (Schizosaccharomyces pombe) through a pathway involving regulatory and catalytic subunits of PP2A and acting on both Wee1 and Cdc25.
    Elder RT; Yu M; Chen M; Zhu X; Yanagida M; Zhao Y
    Virology; 2001 Sep; 287(2):359-70. PubMed ID: 11531413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP.
    Watanabe N; Arai H; Nishihara Y; Taniguchi M; Watanabe N; Hunter T; Osada H
    Proc Natl Acad Sci U S A; 2004 Mar; 101(13):4419-24. PubMed ID: 15070733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of Vimentin Phosphorylation by the Avian Reovirus p17 through Inhibition of CDK1 and Plk1 Impacting the G2/M Phase of the Cell Cycle.
    Chiu HC; Huang WR; Liao TL; Wu HY; Munir M; Shih WL; Liu HJ
    PLoS One; 2016; 11(9):e0162356. PubMed ID: 27603133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.