These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 20373189)

  • 1. A review of thin layer drying of foods: theory, modeling, and experimental results.
    Erbay Z; Icier F
    Crit Rev Food Sci Nutr; 2010 May; 50(5):441-64. PubMed ID: 20373189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling of nectarine drying under near infrared - Vacuum conditions.
    Alaei B; Chayjan RA
    Acta Sci Pol Technol Aliment; 2015; 14(1):15-27. PubMed ID: 28068016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comprehensive review of thin-layer drying models used in agricultural products.
    Ertekin C; Firat MZ
    Crit Rev Food Sci Nutr; 2017 Mar; 57(4):701-717. PubMed ID: 25751069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the Thin-Layer Drying of Fruits and Vegetables: A Review.
    Onwude DI; Hashim N; Janius RB; Nawi NM; Abdan K
    Compr Rev Food Sci Food Saf; 2016 May; 15(3):599-618. PubMed ID: 33401820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of some physical and drying properties of terebinth fruit (Pistacia atlantica L.) using Artificial Neural Networks.
    Kaveh M; Chayjan RA
    Acta Sci Pol Technol Aliment; 2014; 13(1):65-78. PubMed ID: 24583385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation of variable water diffusivity during drying of peeled and unpeeled tomato.
    Xanthopoulos G; Yanniotis S; Boudouvis AG
    J Food Sci; 2012 Oct; 77(10):E287-96. PubMed ID: 22946755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling moisture diffusivity of pomegranate seed cultivars under fixed, semi fluidized and fluidized bed using mathematical and neural network methods.
    Chayjan RA; Salari K; Barikloo H
    Acta Sci Pol Technol Aliment; 2012 Apr; 11(2):131-48. PubMed ID: 22493156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent developments of artificial intelligence in drying of fresh food: A review.
    Sun Q; Zhang M; Mujumdar AS
    Crit Rev Food Sci Nutr; 2019; 59(14):2258-2275. PubMed ID: 29493285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of blanching temperature and dipping time on drying time of broccoli.
    Doymaz I
    Food Sci Technol Int; 2014 Mar; 20(2):149-57. PubMed ID: 23744113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mathematical modeling of thin-layer drying kinetics and moisture diffusivity study of apple slices using infrared conveyor-belt dryer.
    El-Mesery HS; Ashiagbor K; Hu Z; Rostom M
    J Food Sci; 2024 Mar; 89(3):1658-1671. PubMed ID: 38317418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-scale model of food drying: Current status and challenges.
    Rahman MM; Joardder MUH; Khan MIH; Pham ND; Karim MA
    Crit Rev Food Sci Nutr; 2018 Mar; 58(5):858-876. PubMed ID: 27646175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. True density and apparent density during the drying process for vegetables and fruits: a review.
    Rodríguez-Ramírez J; Méndez-Lagunas L; López-Ortiz A; Torres SS
    J Food Sci; 2012 Dec; 77(12):R146-54. PubMed ID: 23170871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microwave-convective drying of food materials: A critical review.
    Kumar C; Karim MA
    Crit Rev Food Sci Nutr; 2019; 59(3):379-394. PubMed ID: 28872886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A critical review on the spray drying of fruit extract: effect of additives on physicochemical properties.
    Krishnaiah D; Nithyanandam R; Sarbatly R
    Crit Rev Food Sci Nutr; 2014; 54(4):449-73. PubMed ID: 24236997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shrinkage and porosity evolution during air-drying of non-cellular food systems: Experimental data versus mathematical modelling.
    Nguyen TK; Khalloufi S; Mondor M; Ratti C
    Food Res Int; 2018 Jan; 103():215-225. PubMed ID: 29389609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling drying kinetics of thyme (Thymus vulgaris L.): theoretical and empirical models, and neural networks.
    Rodríguez J; Clemente G; Sanjuán N; Bon J
    Food Sci Technol Int; 2014 Jan; 20(1):13-22. PubMed ID: 23733820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ohmic pre-drying of tomato paste.
    Hosainpour A; Darvishi H; Nargesi F; Fadavi A
    Food Sci Technol Int; 2014 Apr; 20(3):193-204. PubMed ID: 23744116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid Inverse Method to Measure Thermal Diffusivity of Low-Moisture Foods.
    Muramatsu Y; Greiby I; Mishra DK; Dolan KD
    J Food Sci; 2017 Feb; 82(2):420-428. PubMed ID: 28146283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development, validation, and comparison of FE modeling and ANN model for mixed-mode solar drying of potato cylinders.
    Dhalsamant K
    J Food Sci; 2021 Aug; 86(8):3384-3402. PubMed ID: 34287892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of osmotic dehydration to improve fruits and vegetables quality during processing.
    Maftoonazad N
    Recent Pat Food Nutr Agric; 2010 Nov; 2(3):233-42. PubMed ID: 20858191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.