These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 20373735)

  • 1. Changes in transmembrane helix alignment by arginine residues revealed by solid-state NMR experiments and coarse-grained MD simulations.
    Vostrikov VV; Hall BA; Greathouse DV; Koeppe RE; Sansom MS
    J Am Chem Soc; 2010 Apr; 132(16):5803-11. PubMed ID: 20373735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of High pH and Cholesterol on Single Arginine-Containing Transmembrane Peptide Helices.
    Thibado JK; Martfeld AN; Greathouse DV; Koeppe RE
    Biochemistry; 2016 Nov; 55(45):6337-6343. PubMed ID: 27782382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accommodation of a central arginine in a transmembrane peptide by changing the placement of anchor residues.
    Vostrikov VV; Hall BA; Sansom MS; Koeppe RE
    J Phys Chem B; 2012 Nov; 116(43):12980-90. PubMed ID: 23030363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proline kink angle distributions for GWALP23 in lipid bilayers of different thicknesses.
    Rankenberg JM; Vostrikov VV; DuVall CD; Greathouse DV; Koeppe RE; Grant CV; Opella SJ
    Biochemistry; 2012 May; 51(17):3554-64. PubMed ID: 22489564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Lipid Saturation, Hydrophobic Length and Cholesterol on Double-Arginine-Containing Helical Peptides in Bilayer Membranes.
    Lipinski K; McKay MJ; Afrose F; Martfeld AN; Koeppe RE; Greathouse DV
    Chembiochem; 2019 Nov; 20(21):2784-2792. PubMed ID: 31150136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tyrosine replacing tryptophan as an anchor in GWALP peptides.
    Gleason NJ; Vostrikov VV; Greathouse DV; Grant CV; Opella SJ; Koeppe RE
    Biochemistry; 2012 Mar; 51(10):2044-53. PubMed ID: 22364236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparisons of interfacial Phe, Tyr, and Trp residues as determinants of orientation and dynamics for GWALP transmembrane peptides.
    Sparks KA; Gleason NJ; Gist R; Langston R; Greathouse DV; Koeppe RE
    Biochemistry; 2014 Jun; 53(22):3637-45. PubMed ID: 24829070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionization Properties of Histidine Residues in the Lipid Bilayer Membrane Environment.
    Martfeld AN; Greathouse DV; Koeppe RE
    J Biol Chem; 2016 Sep; 291(36):19146-56. PubMed ID: 27440045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breaking the Backbone: Central Arginine Residues Induce Membrane Exit and Helix Distortions within a Dynamic Membrane Peptide.
    McKay MJ; Fu R; Greathouse DV; Koeppe RE
    J Phys Chem B; 2019 Sep; 123(38):8034-8047. PubMed ID: 31483653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of GWALP transmembrane peptides to changes in the tryptophan anchor positions.
    Vostrikov VV; Koeppe RE
    Biochemistry; 2011 Sep; 50(35):7522-35. PubMed ID: 21800919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coarse-grained molecular dynamics simulations of membrane proteins and peptides.
    Bond PJ; Holyoake J; Ivetac A; Khalid S; Sansom MS
    J Struct Biol; 2007 Mar; 157(3):593-605. PubMed ID: 17116404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single tryptophan and tyrosine comparisons in the N-terminal and C-terminal interface regions of transmembrane GWALP peptides.
    Gleason NJ; Greathouse DV; Grant CV; Opella SJ; Koeppe RE
    J Phys Chem B; 2013 Nov; 117(44):13786-94. PubMed ID: 24111589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of mean force analysis of the self-association of leucine-rich transmembrane α-helices: difference between atomistic and coarse-grained simulations.
    Nishizawa M; Nishizawa K
    J Chem Phys; 2014 Aug; 141(7):075101. PubMed ID: 25149815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpretation of 2H-NMR experiments on the orientation of the transmembrane helix WALP23 by computer simulations.
    Monticelli L; Tieleman DP; Fuchs PF
    Biophys J; 2010 Sep; 99(5):1455-64. PubMed ID: 20816057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the water defect at the HIV-1 gp41 membrane spanning domain in bilayers with and without cholesterol using molecular simulations.
    Baker MK; Gangupomu VK; Abrams CF
    Biochim Biophys Acta; 2014 May; 1838(5):1396-405. PubMed ID: 24440660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the combined analysis of ²H and ¹⁵N/¹H solid-state NMR data for determination of transmembrane peptide orientation and dynamics.
    Vostrikov VV; Grant CV; Opella SJ; Koeppe RE
    Biophys J; 2011 Dec; 101(12):2939-47. PubMed ID: 22208192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of the dimerization of transmembrane alpha-helices.
    Psachoulia E; Marshall DP; Sansom MS
    Acc Chem Res; 2010 Mar; 43(3):388-96. PubMed ID: 20017540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revisiting hydrophobic mismatch with free energy simulation studies of transmembrane helix tilt and rotation.
    Kim T; Im W
    Biophys J; 2010 Jul; 99(1):175-83. PubMed ID: 20655845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arginine in membranes: the connection between molecular dynamics simulations and translocon-mediated insertion experiments.
    Schow EV; Freites JA; Myint PC; Bernsel A; von Heijne G; White SH; Tobias DJ
    J Membr Biol; 2011 Jan; 239(1-2):35-48. PubMed ID: 21127848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring peptide-membrane interactions with coarse-grained MD simulations.
    Hall BA; Chetwynd AP; Sansom MS
    Biophys J; 2011 Apr; 100(8):1940-8. PubMed ID: 21504730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.