BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 20373743)

  • 1. Triggering the sintering of silver nanoparticles at room temperature.
    Magdassi S; Grouchko M; Berezin O; Kamyshny A
    ACS Nano; 2010 Apr; 4(4):1943-8. PubMed ID: 20373743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conductive inks with a "built-in" mechanism that enables sintering at room temperature.
    Grouchko M; Kamyshny A; Mihailescu CF; Anghel DF; Magdassi S
    ACS Nano; 2011 Apr; 5(4):3354-9. PubMed ID: 21438563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transparent conductive coatings by printing coffee ring arrays obtained at room temperature.
    Layani M; Gruchko M; Milo O; Balberg I; Azulay D; Magdassi S
    ACS Nano; 2009 Nov; 3(11):3537-42. PubMed ID: 19928933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new approach causing the patterns fabricated by silver nanoparticles to be conductive without sintering.
    Tang Y; He W; Zhou G; Wang S; Yang X; Tao Z; Zhou J
    Nanotechnology; 2012 Sep; 23(35):355304. PubMed ID: 22895119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate-facilitated nanoparticle sintering and component interconnection procedure.
    Allen M; Leppäniemi J; Vilkman M; Alastalo A; Mattila T
    Nanotechnology; 2010 Nov; 21(47):475204. PubMed ID: 21030761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of solid silver nanoparticles for inkjet printed flexible electronics with high conductivity.
    Shen W; Zhang X; Huang Q; Xu Q; Song W
    Nanoscale; 2014; 6(3):1622-8. PubMed ID: 24337051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano oxide intermediate layer assisted room temperature sintering of ink-jet printed silver nanoparticles pattern.
    Liu Z; Ji H; Yuan Q; Ma X; Feng H; Zhao W; Wei J; Xu C; Li M
    Nanotechnology; 2019 Dec; 30(49):495302. PubMed ID: 31480026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silver Ink Formulations for Sinter-free Printing of Conductive Films.
    Black K; Singh J; Mehta D; Sung S; Sutcliffe CJ; Chalker PR
    Sci Rep; 2016 Feb; 6():20814. PubMed ID: 26857286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ring stain effect at room temperature in silver nanoparticles yields high electrical conductivity.
    Magdassi S; Grouchko M; Toker D; Kamyshny A; Balberg I; Millo O
    Langmuir; 2005 Nov; 21(23):10264-7. PubMed ID: 16262272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper nanoparticles: aqueous phase synthesis and conductive films fabrication at low sintering temperature.
    Deng D; Jin Y; Cheng Y; Qi T; Xiao F
    ACS Appl Mater Interfaces; 2013 May; 5(9):3839-46. PubMed ID: 23578010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coalescence of silver nanoparticles at room temperature: unusual crystal structure transformation and dendrite formation induced by self-assembly.
    Grouchko M; Popov I; Uvarov V; Magdassi S; Kamyshny A
    Langmuir; 2009 Feb; 25(4):2501-3. PubMed ID: 19166274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of low temperature Sn nanoparticles for the fabrication of highly conductive ink.
    Jo YH; Jung I; Choi CS; Kim I; Lee HM
    Nanotechnology; 2011 Jun; 22(22):225701. PubMed ID: 21454937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct printing of silver nanoparticles by an agarose stamp on planar and patterned substrates.
    Kao YC; Hong FC
    Nanotechnology; 2011 May; 22(18):185303. PubMed ID: 21415468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(ethylene imine) and tetraethylenepentamine as protecting agents for metallic copper nanoparticles.
    Pulkkinen P; Shan J; Leppänen K; Känsäkoski A; Laiho A; Järn M; Tenhu H
    ACS Appl Mater Interfaces; 2009 Feb; 1(2):519-25. PubMed ID: 20353245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silver conductive features on flexible substrates from a thermally accelerated chain reaction at low sintering temperatures.
    Chen SP; Kao ZK; Lin JL; Liao YC
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):7064-8. PubMed ID: 23186160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined Inkjet Printing and Infrared Sintering of Silver Nanoparticles using a Swathe-by-Swathe and Layer-by-Layer Approach for 3-Dimensional Structures.
    Vaithilingam J; Simonelli M; Saleh E; Senin N; Wildman RD; Hague RJ; Leach RK; Tuck CJ
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6560-6570. PubMed ID: 28094997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of laser intensity on the characteristic of inkjet-printed silver nanoparticles during continuous laser sintering.
    Moon YJ; Kang H; Kang K; Hwang JY; Lee JH; Moon SJ
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8631-5. PubMed ID: 25958575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-step inkjet printing of conductive silver tracks on polymer substrates.
    Perelaer J; Hendriks CE; de Laat AWM; Schubert US
    Nanotechnology; 2009 Apr; 20(16):165303. PubMed ID: 19420568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure-assisted low-temperature sintering for paper-based writing electronics.
    Xu LY; Yang GY; Jing HY; Wei J; Han YD
    Nanotechnology; 2013 Sep; 24(35):355204. PubMed ID: 23940106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Merging of metal nanoparticles driven by selective wettability of silver nanostructures.
    Grouchko M; Roitman P; Zhu X; Popov I; Kamyshny A; Su H; Magdassi S
    Nat Commun; 2014; 5():2994. PubMed ID: 24389630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.