BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 20373743)

  • 21. UV-Vis Sintering Process for Fabrication of Conductive Coatings Based on Ni-Ag Core-Shell Nanoparticles.
    Pajor-Świerzy A; Szyk-Warszyńska L; Duraczyńska D; Szczepanowicz K
    Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38005147
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of Oxalic Acid Treatment on Conductive Coatings Formed by Ni@Ag Core-Shell Nanoparticles.
    Pajor-Świerzy A; Pawłowski R; Sobik P; Kamyshny A; Szczepanowicz K
    Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009452
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of laser-induced temperature field on the characteristics of laser-sintered silver nanoparticle ink.
    Lee DG; Kim DK; Moon YJ; Moon SJ
    Nanotechnology; 2013 Jul; 24(26):265702. PubMed ID: 23732285
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low-temperature metallic alloying of copper and silver nanoparticles with gold nanoparticles through digestive ripening.
    Smetana AB; Klabunde KJ; Sorensen CM; Ponce AA; Mwale B
    J Phys Chem B; 2006 Feb; 110(5):2155-8. PubMed ID: 16471798
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inkjet Printing on a New Flexible Ceramic Substrate for Internet of Things (IoT) Applications.
    Kirtania SG; Riheen MA; Kim SU; Sekhar K; Wisniewska A; Sekhar PK
    Micromachines (Basel); 2020 Sep; 11(9):. PubMed ID: 32911708
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of metallic inks based on nickel-silver core-shell nanoparticles for fabrication of conductive films.
    Pajor-Świerzy A; Socha R; Pawłowski R; Warszyński P; Szczepanowicz K
    Nanotechnology; 2019 May; 30(22):225301. PubMed ID: 30721883
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of monodisperse silver nanoparticles for ink-jet printed flexible electronics.
    Zhang Z; Zhang X; Xin Z; Deng M; Wen Y; Song Y
    Nanotechnology; 2011 Oct; 22(42):425601. PubMed ID: 21937786
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolution Mechanism of Photonically Sintered Nano-Silver Conductive Patterns.
    Meng F; Huang J
    Nanomaterials (Basel); 2019 Feb; 9(2):. PubMed ID: 30769790
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inkjet printing of sol-gel synthesized hydrated tungsten oxide nanoparticles for flexible electrochromic devices.
    Costa C; Pinheiro C; Henriques I; Laia CA
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1330-40. PubMed ID: 22321260
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-intensity pulse light sintering of silver nanowire transparent films on polymer substrates: the effect of the thermal properties of substrates on the performance of silver films.
    Jiu J; Sugahara T; Nogi M; Araki T; Suganuma K; Uchida H; Shinozaki K
    Nanoscale; 2013 Dec; 5(23):11820-8. PubMed ID: 24126689
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Maximum conductivity of packed nanoparticles and their polymer composites.
    Untereker D; Lyu S; Schley J; Martinez G; Lohstreter L
    ACS Appl Mater Interfaces; 2009 Jan; 1(1):97-101. PubMed ID: 20355760
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inkjet-printed lines with well-defined morphologies and low electrical resistance on repellent pore-structured polyimide films.
    Kim C; Nogi M; Suganuma K; Yamato Y
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2168-73. PubMed ID: 22452572
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electroless copper plating of inkjet-printed polydopamine nanoparticles: a facile method to fabricate highly conductive patterns at near room temperature.
    Ma S; Liu L; Bromberg V; Singler TJ
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):19494-8. PubMed ID: 25360833
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The fabrication of polycrystalline silver nanowires via self-assembled nanotubes at controlled temperature.
    Liu JH; Tsai CY; Chiu YH; Hsieh FM
    Nanotechnology; 2009 Jan; 20(3):035301. PubMed ID: 19417290
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoparticle printing with single-particle resolution.
    Kraus T; Malaquin L; Schmid H; Riess W; Spencer ND; Wolf H
    Nat Nanotechnol; 2007 Sep; 2(9):570-6. PubMed ID: 18654370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The influence of paper coating content on room temperature sintering of silver nanoparticle ink.
    Andersson H; Manuilskiy A; Lidenmark C; Gao J; Öhlund T; Forsberg S; Örtegren J; Schmidt W; Nilsson HE
    Nanotechnology; 2013 Nov; 24(45):455203. PubMed ID: 24129403
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical welding of binary nanoparticles: room temperature sintering of CuSe and In2S3 nanoparticles for solution-processed CuInS(x)Se(1-x) solar cells.
    Min Lim H; Batabyal SK; Pramana SS; Wong LH; Magdassi S; Mhaisalkar SG
    Chem Commun (Camb); 2013 Jun; 49(47):5351-3. PubMed ID: 23545849
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Printing holes by a dewetting solution enables formation of a transparent conductive film.
    Layani M; Berman R; Magdassi S
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18668-72. PubMed ID: 25331032
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ag-doped manganite nanoparticles: new materials for temperature-controlled medical hyperthermia.
    Melnikov OV; Gorbenko OY; Markelova MN; Kaul AR; Atsarkin VA; Demidov VV; Soto C; Roy EJ; Odintsov BM
    J Biomed Mater Res A; 2009 Dec; 91(4):1048-55. PubMed ID: 19127514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ synthesis of water dispersible bovine serum albumin capped gold and silver nanoparticles and their cytocompatibility studies.
    Murawala P; Phadnis SM; Bhonde RR; Prasad BL
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):224-8. PubMed ID: 19570660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.