These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 20373759)

  • 1. Generation of picoliter droplets with defined contents and concentration gradients from the separation of chemical mixtures.
    Theberge AB; Whyte G; Huck WT
    Anal Chem; 2010 May; 82(9):3449-53. PubMed ID: 20373759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroporation of cells in microfluidic droplets.
    Zhan Y; Wang J; Bao N; Lu C
    Anal Chem; 2009 Mar; 81(5):2027-31. PubMed ID: 19199389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential operation droplet array: an automated microfluidic platform for picoliter-scale liquid handling, analysis, and screening.
    Zhu Y; Zhang YX; Cai LF; Fang Q
    Anal Chem; 2013 Jul; 85(14):6723-31. PubMed ID: 23763273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Droplet microfluidics.
    Teh SY; Lin R; Hung LH; Lee AP
    Lab Chip; 2008 Feb; 8(2):198-220. PubMed ID: 18231657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fast and efficient microfluidic system for highly selective one-to-one droplet fusion.
    Mazutis L; Baret JC; Griffiths AD
    Lab Chip; 2009 Sep; 9(18):2665-72. PubMed ID: 19704982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Droplet-based microfluidic flow injection system with large-scale concentration gradient by a single nanoliter-scale injection for enzyme inhibition assay.
    Cai LF; Zhu Y; Du GS; Fang Q
    Anal Chem; 2012 Jan; 84(1):446-52. PubMed ID: 22128774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Picoliter-volume aqueous droplets in oil: electrochemical detection and yeast cell electroporation.
    Luo C; Yang X; Fu Q; Sun M; Ouyang Q; Chen Y; Ji H
    Electrophoresis; 2006 May; 27(10):1977-83. PubMed ID: 16596709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic liquid-based compound droplet microfluidics for 'on-drop' separations and sensing.
    Barikbin Z; Rahman MT; Parthiban P; Rane AS; Jain V; Duraiswamy S; Lee SH; Khan SA
    Lab Chip; 2010 Sep; 10(18):2458-63. PubMed ID: 20697661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic gradient formation for nanoflow chip LC.
    Brennen RA; Yin H; Killeen KP
    Anal Chem; 2007 Dec; 79(24):9302-9. PubMed ID: 17997523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting.
    Tan YC; Fisher JS; Lee AI; Cristini V; Lee AP
    Lab Chip; 2004 Aug; 4(4):292-8. PubMed ID: 15269794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets.
    He M; Edgar JS; Jeffries GD; Lorenz RM; Shelby JP; Chiu DT
    Anal Chem; 2005 Mar; 77(6):1539-44. PubMed ID: 15762555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microfluidic abacus channel for controlling the addition of droplets.
    Um E; Park JK
    Lab Chip; 2009 Jan; 9(2):207-12. PubMed ID: 19107275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system.
    Shestopalov I; Tice JD; Ismagilov RF
    Lab Chip; 2004 Aug; 4(4):316-21. PubMed ID: 15269797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New generation of amino coumarin methyl sulfonate-based fluorogenic substrates for amidase assays in droplet-based microfluidic applications.
    Woronoff G; El Harrak A; Mayot E; Schicke O; Miller OJ; Soumillion P; Griffiths AD; Ryckelynck M
    Anal Chem; 2011 Apr; 83(8):2852-7. PubMed ID: 21413778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Droplets and emulsions: very high-throughput screening in biology].
    Baret JC; Taly V; Ryckelynck M; Merten CA; Griffiths AD
    Med Sci (Paris); 2009; 25(6-7):627-32. PubMed ID: 19602361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-chip single-copy real-time reverse-transcription PCR in isolated picoliter droplets.
    Beer NR; Wheeler EK; Lee-Houghton L; Watkins N; Nasarabadi S; Hebert N; Leung P; Arnold DW; Bailey CG; Colston BW
    Anal Chem; 2008 Mar; 80(6):1854-8. PubMed ID: 18278951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrowetting-based droplet mixers for microfluidic systems.
    Paik P; Pamula VK; Pollack MG; Fair RB
    Lab Chip; 2003 Feb; 3(1):28-33. PubMed ID: 15100802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity.
    Baret JC; Miller OJ; Taly V; Ryckelynck M; El-Harrak A; Frenz L; Rick C; Samuels ML; Hutchison JB; Agresti JJ; Link DR; Weitz DA; Griffiths AD
    Lab Chip; 2009 Jul; 9(13):1850-8. PubMed ID: 19532959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic droplet trapping array as nanoliter reactors for gas-liquid chemical reaction.
    Zhang Q; Zeng S; Qin J; Lin B
    Electrophoresis; 2009 Sep; 30(18):3181-8. PubMed ID: 19705356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elasticity-driven droplet movement on a microbeam with gradient stiffness: a biomimetic self-propelling mechanism.
    Zheng XP; Zhao HP; Gao LT; Liu JL; Yu SW; Feng XQ
    J Colloid Interface Sci; 2008 Jul; 323(1):133-40. PubMed ID: 18442826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.