These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 20374493)

  • 61. Insight into the RssB-Mediated Recognition and Delivery of σ
    Micevski D; Zeth K; Mulhern TD; Schuenemann VJ; Zammit JE; Truscott KN; Dougan DA
    Biomolecules; 2020 Apr; 10(4):. PubMed ID: 32316259
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The expanded specificity and physiological role of a widespread N-degron recognin.
    Gao X; Yeom J; Groisman EA
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18629-18637. PubMed ID: 31451664
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Retapamulin-Assisted Ribosome Profiling Reveals the Alternative Bacterial Proteome.
    Meydan S; Marks J; Klepacki D; Sharma V; Baranov PV; Firth AE; Margus T; Kefi A; Vázquez-Laslop N; Mankin AS
    Mol Cell; 2019 May; 74(3):481-493.e6. PubMed ID: 30904393
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Insights on a putative aminoacyl-tRNA-protein transferase of Leishmania major.
    Sharma R; Terrão MC; Castro FF; Breitling R; Faça V; Oliveira EB; Cruz AK
    PLoS One; 2018; 13(9):e0203369. PubMed ID: 30208112
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Reduction in adaptor amounts establishes degradation hierarchy among protease substrates.
    Yeom J; Gao X; Groisman EA
    Proc Natl Acad Sci U S A; 2018 May; 115(19):E4483-E4492. PubMed ID: 29686082
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Identification of New Degrons in
    Liu N; Chaudhry MT; Xie Z; Kreth J; Merritt J
    Front Microbiol; 2017; 8():2572. PubMed ID: 29312250
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Sequestration from Protease Adaptor Confers Differential Stability to Protease Substrate.
    Yeom J; Wayne KJ; Groisman EA
    Mol Cell; 2017 Apr; 66(2):234-246.e5. PubMed ID: 28431231
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The Copper Efflux Regulator CueR Is Subject to ATP-Dependent Proteolysis in
    Bittner LM; Kraus A; Schäkermann S; Narberhaus F
    Front Mol Biosci; 2017; 4():9. PubMed ID: 28293558
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Real-time detection of N-end rule-mediated ubiquitination via fluorescently labeled substrate probes.
    Mot AC; Prell E; Klecker M; Naumann C; Faden F; Westermann B; Dissmeyer N
    New Phytol; 2018 Jan; 217(2):613-624. PubMed ID: 28277608
    [TBL] [Abstract][Full Text] [Related]  

  • 70. N-terminomics identifies Prli42 as a membrane miniprotein conserved in Firmicutes and critical for stressosome activation in Listeria monocytogenes.
    Impens F; Rolhion N; Radoshevich L; Bécavin C; Duval M; Mellin J; García Del Portillo F; Pucciarelli MG; Williams AH; Cossart P
    Nat Microbiol; 2017 Feb; 2():17005. PubMed ID: 28191904
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Precise quantification of translation inhibition by mRNA structures that overlap with the ribosomal footprint in N-terminal coding sequences.
    Espah Borujeni A; Cetnar D; Farasat I; Smith A; Lundgren N; Salis HM
    Nucleic Acids Res; 2017 May; 45(9):5437-5448. PubMed ID: 28158713
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Structural basis for dual specificity of yeast N-terminal amidase in the N-end rule pathway.
    Kim MK; Oh SJ; Lee BG; Song HK
    Proc Natl Acad Sci U S A; 2016 Nov; 113(44):12438-12443. PubMed ID: 27791147
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Successful expression of the Bordetella petrii nitrile hydratase activator P14K and the unnecessary role of Ser115.
    Sun W; Zhu L; Chen X; Chen P; Yang L; Ding W; Zhou Z; Liu Y
    BMC Biotechnol; 2016 Feb; 16():21. PubMed ID: 26897378
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Structure and tRNA Specificity of MibB, a Lantibiotic Dehydratase from Actinobacteria Involved in NAI-107 Biosynthesis.
    Ortega MA; Hao Y; Walker MC; Donadio S; Sosio M; Nair SK; van der Donk WA
    Cell Chem Biol; 2016 Mar; 23(3):370-380. PubMed ID: 26877024
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Structure of a putative ClpS N-end rule adaptor protein from the malaria pathogen Plasmodium falciparum.
    AhYoung AP; Koehl A; Vizcarra CL; Cascio D; Egea PF
    Protein Sci; 2016 Mar; 25(3):689-701. PubMed ID: 26701219
    [TBL] [Abstract][Full Text] [Related]  

  • 76. How cells coordinate waste removal through their major proteolytic pathways.
    Martens S; Bachmair A
    Nat Cell Biol; 2015 Jul; 17(7):841-2. PubMed ID: 26123109
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Conditional Proteolysis of the Membrane Protein YfgM by the FtsH Protease Depends on a Novel N-terminal Degron.
    Bittner LM; Westphal K; Narberhaus F
    J Biol Chem; 2015 Jul; 290(31):19367-78. PubMed ID: 26092727
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The ClpS-like N-domain is essential for the functioning of Ubr11, an N-recognin in Schizosaccharomyces pombe.
    Kitamura K
    Springerplus; 2014; 3():257. PubMed ID: 26034658
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A conserved proline triplet in Val-tRNA synthetase and the origin of elongation factor P.
    Starosta AL; Lassak J; Peil L; Atkinson GC; Woolstenhulme CJ; Virumäe K; Buskirk A; Tenson T; Remme J; Jung K; Wilson DN
    Cell Rep; 2014 Oct; 9(2):476-83. PubMed ID: 25310979
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The determination of tRNALeu recognition nucleotides for Escherichia coli L/F transferase.
    Fung AW; Leung CC; Fahlman RP
    RNA; 2014 Aug; 20(8):1210-22. PubMed ID: 24935875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.