These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 20374541)

  • 1. The effects of electrode impedance on data quality and statistical significance in ERP recordings.
    Kappenman ES; Luck SJ
    Psychophysiology; 2010 Sep; 47(5):888-904. PubMed ID: 20374541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scalp electrode impedance, infection risk, and EEG data quality.
    Ferree TC; Luu P; Russell GS; Tucker DM
    Clin Neurophysiol; 2001 Mar; 112(3):536-44. PubMed ID: 11222977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High and dry? Comparing active dry EEG electrodes to active and passive wet electrodes.
    Mathewson KE; Harrison TJ; Kizuk SA
    Psychophysiology; 2017 Jan; 54(1):74-82. PubMed ID: 28000254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel hydrogel-based preparation-free EEG electrode.
    Alba NA; Sclabassi RJ; Sun M; Cui XT
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):415-23. PubMed ID: 20423811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does combing the scalp reduce scalp electrode impedances?
    Mahajan Y; McArthur G
    J Neurosci Methods; 2010 May; 188(2):287-9. PubMed ID: 20211649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Bristle-Shaped Semi-Dry Electrode With Low Contact Impedance and Ease of Use Features for EEG Signal Measurements.
    Gao KP; Yang HJ; Liao LL; Jiang CP; Zhao N; Wang XL; Li XY; Chen X; Yang B; Liu J
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):750-761. PubMed ID: 31170063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new EEG recording system for passive dry electrodes.
    Gargiulo G; Calvo RA; Bifulco P; Cesarelli M; Jin C; Mohamed A; van Schaik A
    Clin Neurophysiol; 2010 May; 121(5):686-93. PubMed ID: 20097606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dry electrode for EEG recording.
    Taheri BA; Knight RT; Smith RL
    Electroencephalogr Clin Neurophysiol; 1994 May; 90(5):376-83. PubMed ID: 7514984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design Principles and Dynamic Front End Reconfiguration for Low Noise EEG Acquisition With Finger Based Dry Electrodes.
    Nathan V; Jafari R
    IEEE Trans Biomed Circuits Syst; 2015 Oct; 9(5):631-40. PubMed ID: 26462239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrode modifications to lower electrode impedance and improve neural signal recording sensitivity.
    Chung T; Wang JQ; Wang J; Cao B; Li Y; Pang SW
    J Neural Eng; 2015 Oct; 12(5):056018. PubMed ID: 26394650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of impedance spectra for dry and wet EarEEG electrodes.
    Kappel SL; Kidmose P
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3161-4. PubMed ID: 26736963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A direct comparison of active and passive amplification electrodes in the same amplifier system.
    Laszlo S; Ruiz-Blondet M; Khalifian N; Chu F; Jin Z
    J Neurosci Methods; 2014 Sep; 235():298-307. PubMed ID: 25075801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrode scalp impedance differences between electroencephalography machines in healthy dogs.
    Luca J; Hazenfratz M; Monteith G; Sanchez A; Gaitero L; James F
    Can J Vet Res; 2021 Oct; 85(4):309-311. PubMed ID: 34602736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Miniaturized electroencephalographic scalp electrode for optimal wearing comfort.
    Nikulin VV; Kegeles J; Curio G
    Clin Neurophysiol; 2010 Jul; 121(7):1007-14. PubMed ID: 20227914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quality assessment of electroencephalography obtained from a "dry electrode" system.
    Slater JD; Kalamangalam GP; Hope O
    J Neurosci Methods; 2012 Jul; 208(2):134-7. PubMed ID: 22633894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Adhesive and Capacitive Carbon Nanotube-Based Electrode to Record Electroencephalograph Signals From the Hairy Scalp.
    Lee SM; Kim JH; Park C; Hwang JY; Hong JS; Lee KH; Lee SH
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):138-47. PubMed ID: 26390442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of an easy, standardized and clinically practical method (SurePrep) for the preparation of electrode-skin contact in neurophysiological recordings.
    Stjerna S; Alatalo P; Mäki J; Vanhatalo S
    Physiol Meas; 2010 Jul; 31(7):889-901. PubMed ID: 20505217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On electrical potentials observed at a distance from intracranial electrode contacts.
    Wennberg R
    Clin Neurophysiol; 2010 Feb; 121(2):259-62; author reply 262-3. PubMed ID: 19951844
    [No Abstract]   [Full Text] [Related]  

  • 19. Characterizing contact impedance, signal quality and robustness as a function of the cardinality and arrangement of fingers on dry contact EEG electrodes.
    Nathan V; Jafari R
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3755-8. PubMed ID: 25570808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does electrode impedance affect the recording of ocular vestibular-evoked myogenic potentials?
    Taylor RL; Schulin M; Goonetilleke S; Welgampola MS
    J Am Acad Audiol; 2014; 25(10):969-74. PubMed ID: 25514449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.