BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 20375014)

  • 1. Prion fibrillization is mediated by a native structural element that comprises helices H2 and H3.
    Adrover M; Pauwels K; Prigent S; de Chiara C; Xu Z; Chapuis C; Pastore A; Rezaei H
    J Biol Chem; 2010 Jul; 285(27):21004-12. PubMed ID: 20375014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual conformation of H2H3 domain of prion protein in mammalian cells.
    Xu Z; Prigent S; Deslys JP; Rezaei H
    J Biol Chem; 2011 Nov; 286(46):40060-8. PubMed ID: 21911495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expansion of the octarepeat domain alters the misfolding pathway but not the folding pathway of the prion protein.
    Leliveld SR; Stitz L; Korth C
    Biochemistry; 2008 Jun; 47(23):6267-78. PubMed ID: 18473442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The oligomerization properties of prion protein are restricted to the H2H3 domain.
    Chakroun N; Prigent S; Dreiss CA; Noinville S; Chapuis C; Fraternali F; Rezaei H
    FASEB J; 2010 Sep; 24(9):3222-31. PubMed ID: 20410442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How does domain replacement affect fibril formation of the rabbit/human prion proteins.
    Yan X; Huang JJ; Zhou Z; Chen J; Liang Y
    PLoS One; 2014; 9(11):e113238. PubMed ID: 25401497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathological mutations H187R and E196K facilitate subdomain separation and prion protein conversion by destabilization of the native structure.
    Hadži S; Ondračka A; Jerala R; Hafner-Bratkovič I
    FASEB J; 2015 Mar; 29(3):882-93. PubMed ID: 25416551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The peculiar nature of unfolding of the human prion protein.
    Baskakov IV; Legname G; Gryczynski Z; Prusiner SB
    Protein Sci; 2004 Mar; 13(3):586-95. PubMed ID: 14767078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the propensities of helices in PrP(C) to form beta sheet using NMR structures and sequence alignments.
    Dima RI; Thirumalai D
    Biophys J; 2002 Sep; 83(3):1268-80. PubMed ID: 12202354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of prion protein assembly into amyloid.
    Stöhr J; Weinmann N; Wille H; Kaimann T; Nagel-Steger L; Birkmann E; Panza G; Prusiner SB; Eigen M; Riesner D
    Proc Natl Acad Sci U S A; 2008 Feb; 105(7):2409-14. PubMed ID: 18268326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Core structure of amyloid fibrils formed by residues 106-126 of the human prion protein.
    Walsh P; Simonetti K; Sharpe S
    Structure; 2009 Mar; 17(3):417-26. PubMed ID: 19278656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prion protein amyloid formation under native-like conditions involves refolding of the C-terminal alpha-helical domain.
    Cobb NJ; Apetri AC; Surewicz WK
    J Biol Chem; 2008 Dec; 283(50):34704-11. PubMed ID: 18930924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autocatalytic conversion of recombinant prion proteins displays a species barrier.
    Baskakov IV
    J Biol Chem; 2004 Feb; 279(9):7671-7. PubMed ID: 14668351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of methionine oxidation as an initial event on the pathway of human prion protein conversion.
    Elmallah MI; Borgmeyer U; Betzel C; Redecke L
    Prion; 2013; 7(5):404-11. PubMed ID: 24121542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational polymorphism of the amyloidogenic peptide homologous to residues 113-127 of the prion protein.
    Satheeshkumar KS; Jayakumar R
    Biophys J; 2003 Jul; 85(1):473-83. PubMed ID: 12829502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic prions and other human neurodegenerative proteinopathies.
    Le NT; Narkiewicz J; Aulić S; Salzano G; Tran HT; Scaini D; Moda F; Giachin G; Legname G
    Virus Res; 2015 Sep; 207():25-37. PubMed ID: 25449570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generic amyloidogenicity of mammalian prion proteins from species susceptible and resistant to prions.
    Nyström S; Hammarström P
    Sci Rep; 2015 May; 5():10101. PubMed ID: 25960067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The presence of valine at residue 129 in human prion protein accelerates amyloid formation.
    Baskakov I; Disterer P; Breydo L; Shaw M; Gill A; James W; Tahiri-Alaoui A
    FEBS Lett; 2005 May; 579(12):2589-96. PubMed ID: 15862295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mammalian prion protein (PrP) forms conformationally different amyloid intracellular aggregates in bacteria.
    Macedo B; Sant'Anna R; Navarro S; Cordeiro Y; Ventura S
    Microb Cell Fact; 2015 Nov; 14():174. PubMed ID: 26536866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methionine oxidation perturbs the structural core of the prion protein and suggests a generic misfolding pathway.
    Younan ND; Nadal RC; Davies P; Brown DR; Viles JH
    J Biol Chem; 2012 Aug; 287(34):28263-75. PubMed ID: 22654104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclin-dependent kinase 5 phosphorylation of familial prion protein mutants exacerbates conversion into amyloid structure.
    Rouget R; Sharma G; LeBlanc AC
    J Biol Chem; 2015 Feb; 290(9):5759-71. PubMed ID: 25572400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.