These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
594 related articles for article (PubMed ID: 20375905)
1. Interleukin-6 inhibits endothelial nitric oxide synthase activation and increases endothelial nitric oxide synthase binding to stabilized caveolin-1 in human vascular endothelial cells. Hung MJ; Cherng WJ; Hung MY; Wu HT; Pang JH J Hypertens; 2010 May; 28(5):940-51. PubMed ID: 20375905 [TBL] [Abstract][Full Text] [Related]
2. Aliskiren attenuates the effects of interleukin-6 on endothelial nitric oxide synthase and caveolin-1 in human aortic endothelial cells. Hung MJ; Kao YC; Mao CT; Chen TH; Chen WS Nitric Oxide; 2016 Dec; 61():45-54. PubMed ID: 27773804 [TBL] [Abstract][Full Text] [Related]
3. The role of caveolin-1 in PCB77-induced eNOS phosphorylation in human-derived endothelial cells. Lim EJ; Smart EJ; Toborek M; Hennig B Am J Physiol Heart Circ Physiol; 2007 Dec; 293(6):H3340-7. PubMed ID: 17933968 [TBL] [Abstract][Full Text] [Related]
4. Interleukin-6 impairs the insulin signaling pathway, promoting production of nitric oxide in human umbilical vein endothelial cells. Andreozzi F; Laratta E; Procopio C; Hribal ML; Sciacqua A; Perticone M; Miele C; Perticone F; Sesti G Mol Cell Biol; 2007 Mar; 27(6):2372-83. PubMed ID: 17242212 [TBL] [Abstract][Full Text] [Related]
5. Agonist-modulated regulation of AMP-activated protein kinase (AMPK) in endothelial cells. Evidence for an AMPK -> Rac1 -> Akt -> endothelial nitric-oxide synthase pathway. Levine YC; Li GK; Michel T J Biol Chem; 2007 Jul; 282(28):20351-64. PubMed ID: 17519230 [TBL] [Abstract][Full Text] [Related]
6. Caveolin 1 is required for the activation of endothelial nitric oxide synthase in response to 17beta-estradiol. Sud N; Wiseman DA; Black SM Mol Endocrinol; 2010 Aug; 24(8):1637-49. PubMed ID: 20610538 [TBL] [Abstract][Full Text] [Related]
7. Visfatin activates eNOS via Akt and MAP kinases and improves endothelial cell function and angiogenesis in vitro and in vivo: translational implications for atherosclerosis. Lovren F; Pan Y; Shukla PC; Quan A; Teoh H; Szmitko PE; Peterson MD; Gupta M; Al-Omran M; Verma S Am J Physiol Endocrinol Metab; 2009 Jun; 296(6):E1440-9. PubMed ID: 19351806 [TBL] [Abstract][Full Text] [Related]
8. Salidroside improves endothelial function and alleviates atherosclerosis by activating a mitochondria-related AMPK/PI3K/Akt/eNOS pathway. Xing SS; Yang XY; Zheng T; Li WJ; Wu D; Chi JY; Bian F; Bai XL; Wu GJ; Zhang YZ; Zhang CT; Zhang YH; Li YS; Jin S Vascul Pharmacol; 2015 Sep; 72():141-52. PubMed ID: 26187353 [TBL] [Abstract][Full Text] [Related]
9. Propionyl-L-carnitine induces eNOS activation and nitric oxide synthesis in endothelial cells via PI3 and Akt kinases. Ning WH; Zhao K Vascul Pharmacol; 2013; 59(3-4):76-82. PubMed ID: 23850990 [TBL] [Abstract][Full Text] [Related]
10. Leptin-stimulated endothelial nitric-oxide synthase via an adenosine 5'-monophosphate-activated protein kinase/Akt signaling pathway is attenuated by interaction with C-reactive protein. Procopio C; Andreozzi F; Laratta E; Cassese A; Beguinot F; Arturi F; Hribal ML; Perticone F; Sesti G Endocrinology; 2009 Aug; 150(8):3584-93. PubMed ID: 19359389 [TBL] [Abstract][Full Text] [Related]
11. Regulation of endothelial nitric oxide synthase activation in endothelial cells by S1P1 and S1P3. Tölle M; Klöckl L; Wiedon A; Zidek W; van der Giet M; Schuchardt M Biochem Biophys Res Commun; 2016 Aug; 476(4):627-634. PubMed ID: 27282481 [TBL] [Abstract][Full Text] [Related]
12. Crocin Improves the Endothelial Function Regulated by Kca3.1 Through ERK and Akt Signaling Pathways. Yang H; Li X; Liu Y; Li X; Li X; Wu M; Lv X; Chunhua C; Ding X; Zhang Y Cell Physiol Biochem; 2018; 46(2):765-780. PubMed ID: 29621746 [TBL] [Abstract][Full Text] [Related]
13. Nitric oxide-dependent Src activation and resultant caveolin-1 phosphorylation promote eNOS/caveolin-1 binding and eNOS inhibition. Chen Z; Bakhshi FR; Shajahan AN; Sharma T; Mao M; Trane A; Bernatchez P; van Nieuw Amerongen GP; Bonini MG; Skidgel RA; Malik AB; Minshall RD Mol Biol Cell; 2012 Apr; 23(7):1388-98. PubMed ID: 22323292 [TBL] [Abstract][Full Text] [Related]
14. Effects of bezafibrate on the expression of endothelial nitric oxide synthase gene and its mechanisms in cultured bovine endothelial cells. Wang Y; Wang Y; Yang Q; Yan JT; Zhao C; Cianflone K; Wang DW Atherosclerosis; 2006 Aug; 187(2):265-73. PubMed ID: 16256120 [TBL] [Abstract][Full Text] [Related]
15. A novel role for caveolin-1 in regulating endothelial nitric oxide synthase activation in response to H2O2 and shear stress. Tian J; Hou Y; Lu Q; Wiseman DA; Vasconcelos Fonsesca F; Elms S; Fulton DJ; Black SM Free Radic Biol Med; 2010 Jul; 49(2):159-70. PubMed ID: 20353820 [TBL] [Abstract][Full Text] [Related]
16. Bupivacaine-induced contraction is attenuated by endothelial nitric oxide release modulated by activation of both stimulatory and inhibitory phosphorylation (Ser1177 and Thr495) of endothelial nitric oxide synthase. Lee SH; Park CS; Ok SH; Kim D; Kim KN; Hong JM; Kim JY; Bae SI; An S; Sohn JT Eur J Pharmacol; 2019 Jun; 853():121-128. PubMed ID: 30880179 [TBL] [Abstract][Full Text] [Related]
17. Novel mechanism of endothelial nitric oxide synthase activation mediated by caveolae internalization in endothelial cells. Maniatis NA; Brovkovych V; Allen SE; John TA; Shajahan AN; Tiruppathi C; Vogel SM; Skidgel RA; Malik AB; Minshall RD Circ Res; 2006 Oct; 99(8):870-7. PubMed ID: 16973909 [TBL] [Abstract][Full Text] [Related]
18. Androgen receptor-dependent activation of endothelial nitric oxide synthase in vascular endothelial cells: role of phosphatidylinositol 3-kinase/akt pathway. Yu J; Akishita M; Eto M; Ogawa S; Son BK; Kato S; Ouchi Y; Okabe T Endocrinology; 2010 Apr; 151(4):1822-8. PubMed ID: 20194727 [TBL] [Abstract][Full Text] [Related]
19. Pro-atherosclerotic disturbed flow disrupts caveolin-1 expression, localization, and function via glycocalyx degradation. Harding IC; Mitra R; Mensah SA; Herman IM; Ebong EE J Transl Med; 2018 Dec; 16(1):364. PubMed ID: 30563532 [TBL] [Abstract][Full Text] [Related]
20. Suppression of eNOS-derived superoxide by caveolin-1: a biopterin-dependent mechanism. Karuppiah K; Druhan LJ; Chen CA; Smith T; Zweier JL; Sessa WC; Cardounel AJ Am J Physiol Heart Circ Physiol; 2011 Sep; 301(3):H903-11. PubMed ID: 21724868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]