BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 20376382)

  • 1. Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon.
    Geboers J; Van de Vyver S; Carpentier K; de Blochouse K; Jacobs P; Sels B
    Chem Commun (Camb); 2010 May; 46(20):3577-9. PubMed ID: 20376382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heteropoly acids as efficient acid catalysts in the one-step conversion of cellulose to sugar alcohols.
    Palkovits R; Tajvidi K; Ruppert AM; Procelewska J
    Chem Commun (Camb); 2011 Jan; 47(1):576-8. PubMed ID: 21103493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfer hydrogenation of cellulose to sugar alcohols over supported ruthenium catalysts.
    Kobayashi H; Matsuhashi H; Komanoya T; Hara K; Fukuoka A
    Chem Commun (Camb); 2011 Feb; 47(8):2366-8. PubMed ID: 21161096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of cellulose to hexitols catalyzed by ionic liquid-stabilized ruthenium nanoparticles and a reversible binding agent.
    Zhu Y; Kong ZN; Stubbs LP; Lin H; Shen S; Anslyn EV; Maguire JA
    ChemSusChem; 2010; 3(1):67-70. PubMed ID: 20024980
    [No Abstract]   [Full Text] [Related]  

  • 5. Conversion of (ligno)cellulose feeds to isosorbide with heteropoly acids and Ru on carbon.
    Op de Beeck B; Geboers J; Van de Vyver S; Van Lishout J; Snelders J; Huijgen WJ; Courtin CM; Jacobs PA; Sels BF
    ChemSusChem; 2013 Jan; 6(1):199-208. PubMed ID: 23307750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of cellulose and cellobiose into sorbitol catalyzed by ruthenium supported on a polyoxometalate/metal-organic framework hybrid.
    Chen J; Wang S; Huang J; Chen L; Ma L; Huang X
    ChemSusChem; 2013 Aug; 6(8):1545-55. PubMed ID: 23619979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective bifunctional catalytic conversion of cellulose over reshaped Ni particles at the tip of carbon nanofibers.
    Van de Vyver S; Geboers J; Dusselier M; Schepers H; Vosch T; Zhang L; Van Tendeloo G; Jacobs PA; Sels BF
    ChemSusChem; 2010 Jun; 3(6):698-701. PubMed ID: 20446340
    [No Abstract]   [Full Text] [Related]  

  • 8. Synthesis of isoidide through epimerization of isosorbide using ruthenium on carbon.
    Le Nôtre J; van Haveren J; van Es DS
    ChemSusChem; 2013 Apr; 6(4):693-700. PubMed ID: 23457114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic conversion of cellulose into sugar alcohols.
    Fukuoka A; Dhepe PL
    Angew Chem Int Ed Engl; 2006 Aug; 45(31):5161-3. PubMed ID: 16927334
    [No Abstract]   [Full Text] [Related]  

  • 10. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water.
    Luo C; Wang S; Liu H
    Angew Chem Int Ed Engl; 2007; 46(40):7636-9. PubMed ID: 17763479
    [No Abstract]   [Full Text] [Related]  

  • 11. Method for regio-, chemo- and stereoselective deuterium labeling of sugars based on ruthenium-catalyzed C-H bond activation.
    Fujiwara Y; Iwata H; Sawama Y; Monguchi Y; Sajiki H
    Chem Commun (Camb); 2010 Jul; 46(27):4977-9. PubMed ID: 20544123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water-tolerant mesoporous-carbon-supported ruthenium catalysts for the hydrolysis of cellulose to glucose.
    Kobayashi H; Komanoya T; Hara K; Fukuoka A
    ChemSusChem; 2010 Apr; 3(4):440-3. PubMed ID: 20198680
    [No Abstract]   [Full Text] [Related]  

  • 13. A simple and efficient oxidation of alcohols with ruthenium on carbon.
    Mori S; Takubo M; Makida K; Yanase T; Aoyagi S; Maegawa T; Monguchi Y; Sajiki H
    Chem Commun (Camb); 2009 Sep; (34):5159-61. PubMed ID: 20448979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergy between the metal nanoparticles and the support for the hydrogenation of functionalized carboxylic acids to diols on Ru/TiO2.
    Primo A; Concepción P; Corma A
    Chem Commun (Camb); 2011 Mar; 47(12):3613-5. PubMed ID: 21308122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. cis-Beta-bis(carbonyl) ruthenium-salen complexes: X-ray crystal structures and remarkable catalytic properties toward asymmetric intramolecular alkene cyclopropanation.
    Xu ZJ; Fang R; Zhao C; Huang JS; Li GY; Zhu N; Che CM
    J Am Chem Soc; 2009 Apr; 131(12):4405-17. PubMed ID: 19275149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-step conversion of cellobiose to C6-alcohols using a ruthenium nanocluster catalyst.
    Yan N; Zhao C; Luo C; Dyson PJ; Liu H; Kou Y
    J Am Chem Soc; 2006 Jul; 128(27):8714-5. PubMed ID: 16819849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Synthesis of Sugar Alcohols under Mild Conditions Using a Novel Sugar-Selective Hydrogenation Catalyst Based on Ruthenium Valence Regulation.
    Zhang XJ; Li HW; Bin W; Dou BJ; Chen DS; Cheng XP; Li M; Wang HY; Chen KQ; Jin LQ; Liu ZQ; Zheng YG
    J Agric Food Chem; 2020 Nov; 68(44):12393-12399. PubMed ID: 33095018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mesoporous carbon-supported Pt nanocatalyst for the conversion of lignocellulose to sugar alcohols.
    Park DS; Yun D; Kim TY; Baek J; Yun YS; Yi J
    ChemSusChem; 2013 Dec; 6(12):2281-9. PubMed ID: 24227502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct conversion of cellulose into sorbitol catalyzed by a bifunctional catalyst.
    Li Z; Liu Y; Liu C; Wu S; Wei W
    Bioresour Technol; 2019 Feb; 274():190-197. PubMed ID: 30504102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active carbon-ceramic sphere as support of ruthenium catalysts for catalytic wet air oxidation (CWAO) of resin effluent.
    Liu WM; Hu YQ; Tu ST
    J Hazard Mater; 2010 Jul; 179(1-3):545-51. PubMed ID: 20362394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.