These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 20376382)

  • 21. Ruthenium-catalyzed oxidative cyanation of tertiary amines with molecular oxygen or hydrogen peroxide and sodium cyanide: sp3 C-H bond activation and carbon-carbon bond formation.
    Murahashi S; Nakae T; Terai H; Komiya N
    J Am Chem Soc; 2008 Aug; 130(33):11005-12. PubMed ID: 18646852
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ruthenium-catalyzed hydroxylation of unactivated tertiary C-H bonds.
    McNeill E; Du Bois J
    J Am Chem Soc; 2010 Jul; 132(29):10202-4. PubMed ID: 20593904
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced hydrogenolysis conversion of cellulose to C2-C3 polyols via alkaline pretreatment.
    Liu M; Wang H; Han J; Niu Y
    Carbohydr Polym; 2012 Jun; 89(2):607-12. PubMed ID: 24750765
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct conversion of alcohols to acetals and H(2) catalyzed by an acridine-based ruthenium pincer complex.
    Gunanathan C; Shimon LJ; Milstein D
    J Am Chem Soc; 2009 Mar; 131(9):3146-7. PubMed ID: 19216551
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol.
    Zhang Y; Wang A; Zhang T
    Chem Commun (Camb); 2010 Feb; 46(6):862-4. PubMed ID: 20107631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals.
    Ruppert AM; Weinberg K; Palkovits R
    Angew Chem Int Ed Engl; 2012 Mar; 51(11):2564-601. PubMed ID: 22374680
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthetic scope and mechanistic studies of Ru(OH)x/Al2O3-catalyzed heterogeneous hydrogen-transfer reactions.
    Yamaguchi K; Koike T; Kotani M; Matsushita M; Shinachi S; Mizuno N
    Chemistry; 2005 Nov; 11(22):6574-82. PubMed ID: 16092142
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effective catalytic conversion of cellulose into high yields of methyl glucosides over sulfonated carbon based catalyst.
    Dora S; Bhaskar T; Singh R; Naik DV; Adhikari DK
    Bioresour Technol; 2012 Sep; 120():318-21. PubMed ID: 22776237
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of dimethylfuran from hydroxymethylfurfural through catalytic transfer hydrogenation with ruthenium supported on carbon.
    Jae J; Zheng W; Lobo RF; Vlachos DG
    ChemSusChem; 2013 Jul; 6(7):1158-62. PubMed ID: 23754805
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ruthenium-catalyzed direct C-H bond arylations of heteroarenes.
    Ackermann L; Lygin AV
    Org Lett; 2011 Jul; 13(13):3332-5. PubMed ID: 21644545
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ruthenium-catalyzed regiospecific borylation of methyl C-H bonds.
    Murphy JM; Lawrence JD; Kawamura K; Incarvito C; Hartwig JF
    J Am Chem Soc; 2006 Oct; 128(42):13684-5. PubMed ID: 17044685
    [TBL] [Abstract][Full Text] [Related]  

  • 32. C-H activated isomers of [M(AlCp*)5] (M=Fe, Ru).
    Steinke T; Cokoja M; Gemel C; Kempter A; Krapp A; Frenking G; Zenneck U; Fischer RA
    Angew Chem Int Ed Engl; 2005 May; 44(19):2943-6. PubMed ID: 15828045
    [No Abstract]   [Full Text] [Related]  

  • 33. Substrate-mediated enhanced activity of Ru nanoparticles in catalytic hydrogenation of benzene.
    Liu X; Meng C; Han Y
    Nanoscale; 2012 Apr; 4(7):2288-95. PubMed ID: 22392351
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acid-, water- and high-temperature-stable ruthenium complexes for the total catalytic deoxygenation of glycerol to propane.
    Taher D; Thibault ME; Di Mondo D; Jennings M; Schlaf M
    Chemistry; 2009 Oct; 15(39):10132-43. PubMed ID: 19693757
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure and catalysis of cellulose-derived amorphous carbon bearing SO3H groups.
    Fukuhara K; Nakajima K; Kitano M; Kato H; Hayashi S; Hara M
    ChemSusChem; 2011 Jun; 4(6):778-84. PubMed ID: 21595046
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of some monodeoxy- and dideoxy-hexitols, and derivatives thereof, from D-glucono-1,5-lactone.
    Regeling H; Chittenden GJ
    Carbohydr Res; 1990 Sep; 205():261-8. PubMed ID: 2276138
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The lewis acidic ruthenium-complex-catalyzed addition of beta-diketones to alcohols and styrenes is in fact Brønsted acid catalyzed.
    Liu PN; Zhou ZY; Lau CP
    Chemistry; 2007; 13(30):8610-9. PubMed ID: 17642072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst.
    Liu Y; Luo C; Liu H
    Angew Chem Int Ed Engl; 2012 Mar; 51(13):3249-53. PubMed ID: 22368071
    [No Abstract]   [Full Text] [Related]  

  • 39. Weak-acid sites catalyze the hydrolysis of crystalline cellulose to glucose in water: importance of post-synthetic functionalization of the carbon surface.
    To AT; Chung PW; Katz A
    Angew Chem Int Ed Engl; 2015 Sep; 54(38):11050-3. PubMed ID: 26276901
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation and characterization of ruthenium/carbon aerogel nanocomposites via a supercritical fluid route.
    Zhang Y; Kang D; Aindow M; Erkey C
    J Phys Chem B; 2005 Feb; 109(7):2617-24. PubMed ID: 16851266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.